World Health Organization: Dementia Situation. Report. https://www.who.int/news-room/fact-sheets/detail/dementia. (accessed 15 March 2023).
Perry NSL, Houghton PJ, Theolad A, Jenner P, Perry E. In vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol. 2000;52:895–902.
Article CAS PubMed Google Scholar
Lionetto MG, Caricato R, Calisi A, Giordano ME, Trifone Schettino T. Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives. BioMed Res Int. 2013;2013:321213. https://doi.org/10.1155/2013/321213
Article CAS PubMed PubMed Central Google Scholar
Lockridge O, Norgren RB, Johnson RC, Blake TA. Naturally occurring genetic variants of human Acetylcholinesterase and Butyrylcholinesterase and their potential impact on the risk of toxicity from Cholinesterase inhibitors. Chem Res Toxicol. 2016;29:1381–92. https://doi.org/10.1021/acs.chemrestox.6b00228
Article CAS PubMed PubMed Central Google Scholar
Schulz V. Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine. 2003;10:74–79. https://doi.org/10.1078/1433-187x-00302
Article CAS PubMed Google Scholar
Özdemir Z, Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. Phytochemistry. 2022;203:113340 https://doi.org/10.1016/j.phytochem.2022.113340
Article CAS PubMed Google Scholar
Baltina LA, Komissarova NG. Transformations of pentacyclic triterpenoids as a route to the future medicines. Stud. Nat. Prod. Chem. 2023;76:331–407. https://doi.org/10.1016/B978-0-323-91296-9.00001-0
Ruszkowski P, Bobkiewicz-Kozlowsk T. Natural Triterpenoids and their derivatives with pharmacological activity against neurodegenerative disorders. Mini Rev Org Chem. 2014;11:307–15. https://doi.org/10.2174/1570193X1103140915111559
Standeep, Ghosh S. Triterpenoids: Structural diversity, biosynthetic pathway, and bioactivity. Stud Nat Prod. Chem. 2020;67:411–61. https://doi.org/10.1016/B978-0-12-819483-6.00012-6
Loesche A, Köwitsch A, Lucas SD, Al-Halabi Z, Sippl W, Al-Harrasi A, et al. Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential. Bioorg Chem. 2019;85:23–32. https://doi.org/10.1016/j.bioorg.2018.12.013
Article CAS PubMed Google Scholar
Schwarz S, Lucas SD, Sommerwerk S, Csuk R. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases. Bioorg Med Chem. 2014;22:3370–3378. https://doi.org/10.1016/j.bmc.2014.04.046
Article CAS PubMed Google Scholar
Chung YK, Heo HJ, Kim EK, Kim HK, Huh TL, Lim Y, et al. Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase. Mol Cells. 2001;11:137–143.
Heise N, Friedrich S, Temml V, Schuster D, Siewert B, Csuk R. N-methylated diazabicyclo[3.2.2]nonane substituted triterpenoic acids are excellent, hyperbolic and selective inhibitors for butyrylcholinesterase. Eur J Med Chem. 2022;227:113947 https://doi.org/10.1016/j.ejmech.2021.113947
Article CAS PubMed Google Scholar
Heller L, Kahnt M, Loesche A, Grabandt P, Schwarz S, Brandt W, et al. Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase. Eur J Med Chem. 2017;126:652–668. https://doi.org/10.1016/j.ejmech.2016.11.056
Article CAS PubMed Google Scholar
Loesche A, Kahnt M, Serbian I, Brandt W, Csuk R. Triterpene-based carboxamides act as good inhibitors of butyrylcholinesterase. Molecules. 2019;24:948 https://doi.org/10.3390/molecules24050948
Article CAS PubMed PubMed Central Google Scholar
Heller L, Schwarz S, Obernauer A, Csuk R. Allobetulin derived seco-oleananedicarboxylates act as inhibitors of acetylcholinesterase. Bioorg Med Chem Lett. 2015;25:2654–2656. https://doi.org/10.1016/j.bmcl.2015.04.086
Article CAS PubMed Google Scholar
Smirnova IE, Kazakova OB, Loesche A, Hoenke S, Csuk R. Evaluation of cholinesterase inhibitory activity and cytotoxicity of synthetic derivatives of di- and triterpene metabolites from Pinus silvestris and Dipterocarpus alatus resins. Med Chem Res. 2020;29:1478–85. https://doi.org/10.1007/s00044-020-02566-9
Kazakova O, Smirnova I, Lopatina T, Giniyatullina G, Petrova A, Khusnutdinova E, et al. Synthesis and cholinesterase inhibiting potential of A-ring azepano- and 3-amino-3,4-seco-triterpenoids. Bioorg Chem. 2020;101:104001 https://doi.org/10.1016/j.bioorg.2020.104001
Article CAS PubMed Google Scholar
Kazakova O, Smirnova I, Nguyen TTH, Heise NV, Hoenke S, Serbian I, et al. α-Glucosidase and cholinesterase inhibiting potential of a series of semisynthetic nitrogen triterpenic derivatives. Med Chem Res. 2023;32:485–94. https://doi.org/10.1007/s00044-023-03014-0
Petrova AV, Zueva IV, Petrov KA Synthesis and cholinesterase inhibitory potency of 2,3-indolo-oleanolic acid and some related derivatives. Molbank. 2023;M1739. https://doi.org/10.3390/M1739.
Petrova AV, Kazakova OB, Nazarov IS, Csuk R, Heise NV Acetylcholinesterase inhibitory activity of modified lupane, oleanane, and ursane A-seco-triterpenoids. Chem. Biodiv. 2023;e202300185. https://doi.org/10.1002/cbdv.202300185.
Petrova AV, Poptsov AI, Heise NV, Csuk R, Kazakova OB. Diethoxyphosphoryloxy-oleanolic acid is a nanomolar-inhibitor of butyrylcholinesterase. Chem Biol Drug Dis. 2024;1:e14506 https://doi.org/10.1111/cbdd.14506. 03
Yoo KY, Park SY. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules. 2012;17:3524–38. https://doi.org/10.3390/molecules17033524
Article CAS PubMed PubMed Central Google Scholar
Benishin CG. Actions of ginsenoside Rb1 on choline uptake in central cholinergic nerve endings. Neurochem Int. 1992;21:1–5. https://doi.org/10.1016/0197-0186(92)90061-u
Article CAS PubMed Google Scholar
Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res. 2012;36:342–53. https://doi.org/10.5142/jgr.2012.36.4.342
Article CAS PubMed PubMed Central Google Scholar
Shi YQ, Huang TW, Chen LM, Pan XD, Zhang J, Zhu YG, et al. Ginsenoside Rg1 attenuates amyloid-beta con tent, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. J. Alzheimers Dis. 2010;19:977–89. https://doi.org/10.3233/JAD-2010-1296
Article CAS PubMed Google Scholar
Wang J, Li CH, Farimani MM, Yang JL. Dammarane-type saponins from Gynostemma pentaphyllum and their potential anti-AD activity. Phytochem. Lett. 2019;31:147–54. https://doi.org/10.1016/j.phytol.2019.03.022
Mook-Jung I, Hong HS, Boo JH, Lee KH, Yun SH, Cheong MY, et al. Ginsenoside Rb1 and Rg1 improve spatial learning and increase hippocampal synaptophysin level in mice. J. Neurosci. Res. 2001;63:509–15. https://doi.org/10.1002/jnr.1045
Article CAS PubMed Google Scholar
Deng SL, Baglin I, Nour M, Flekhter O, Vita C, Cavé C. Synthesis of Ursolic Phosphonate derivatives as potential anti-HIV agents may phosphorus, sulfur, and silicon and the related Elements. Cur Org Chem. 2007;182:951–67. https://doi.org/10.1080/10426500601088838
Martorana A, Giacalon V, Bonsignor R, Pace A, Centile C, Pibiri I, et al. Heterocyclic scaffolds for the treatment of Alzheimer’s disease. Curr. Pharm. Des. 2016;22:3971–95. https://doi.org/10.2174/1381612822666160518141650
Article CAS PubMed Google Scholar
Simões CJV, Almeida ZL, Costa D, Jesus CSH, Cardoso AL, Almeida MR, et al. A novel bis-furan scaffold for transthyretin stabilization and amyloid inhibition. Eur J Med Chem. 2016;121:823–40. https://doi.org/10.1016/j.ejmech.2016.02.074
Comments (0)