Triphenylphosphonium (TPP) conjugates of 1,2,3-triazolyl nucleoside analogues. Synthesis, cytotoxicity and antimicrobial activity

Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, et al. Mitochondria-targeted triphenylphosphonium-besrc compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev. 2017;117:10043–10120. https://doi.org/10.1021/acs.chemrev.7b00042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Battogtokha G, Choia YS, Kanga DS, Parka SJ, Shim MS, Huh KM, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B. 2018;8:862–880. https://doi.org/10.1016/j.apsb.2018.05.006

Article  Google Scholar 

Kalyanaraman B, Cheng G, Hardy M, Ouari O, Lopez M, Joseph J, et al. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol. 2018;14:316–27. https://doi.org/10.1016/j.redox.2017.09.020

Article  CAS  PubMed  Google Scholar 

Battogtokh G, Cho Y-Y, Lee JY, Lee HS, Kang HC. Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment. Front Pharmacol. 2018;9:922 https://doi.org/10.3389/fphar.2018.00922

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeena MT, Kim S, Jin S, Ryu J-H. Recent progress in mitochondria-targeted drug and drug-free agents for cancer therapy. Cancers. 2020;12:4 https://doi.org/10.3390/cancers12010004

Article  CAS  Google Scholar 

Wang J, Li J, Xiao Y, Fu B, Qin Z. TPP-based mitocans: a potent strategy for anticancer drug design. RSC Med Chem. 2020;11:858–875. https://doi.org/10.1039/c9md00572b

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pashirova TN, Nemtarev AV, Souto EB, Mironov VF. Triarylphosphonium compounds as effective vectors for mitochondria-targeted delivery systems: decoration strategies and prospects for clinical application. Russ Chem Rev. 2023;92:RCR5095. https://doi.org/10.59761/RCR5095

Article  Google Scholar 

Jung K, Reszka R. Mitochondria as subcellular targets for clinically useful anthracyclines. Adv Drug Deliv Rev. 2001;49:87–105. https://doi.org/10.1016/S0169-409X(01)00128-4

Article  CAS  PubMed  Google Scholar 

Esfandyari-Manesh M, Mohammadi A, Atyabi F, Ebrahimi SM, Shahmoradi E, Amini M, et al. Enhancement mitochondrial apoptosis in breast cancer cells by paclitaxeltriphenylphosphonium conjugate in DNA aptamer modified nanoparticles. J Drug Deliv Sci Technol. 2019;54:101228 https://doi.org/10.1016/j.jddst.2019.101228

Article  CAS  Google Scholar 

Marrache S, Pathak RK, Dhar S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc Natl Acad Sci USA. 2014;111:10444–10449. https://doi.org/10.1073/pnas.1405244111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith RAJ, Hartley RC, Cocheme HM, Murphy MP. Mitochondrial pharmacology. Trends Pharm Sci. 2012;33:341–352. https://doi.org/10.1016/j.tips.2012.03.010

Article  CAS  PubMed  Google Scholar 

Herst PM, Rowe MR, Carson GM, Berridge MV. Functional mitochondria in health and disease. Front Endocrinol. 2017;8:296. https://doi.org/10.3389/fendo.2017.00296/full

Article  Google Scholar 

Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21:85–100. https://doi.org/10.1038/s41580-019-0173-8

Article  CAS  PubMed  Google Scholar 

Debatin K-M. Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother. 2004;53:153–159. https://doi.org/10.1007/s00262-003-0474-8

Article  PubMed  PubMed Central  Google Scholar 

Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, et al. Mito-bomb: targeting mitochondria for cancer therapy. Adv. Mater. 2021;e2007778. https://doi.org/10.1002/adma.202007778.

Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20:471–480. https://doi.org/10.1038/s41568-020-0262-1

Article  CAS  PubMed  Google Scholar 

Salam AAA, Nayek U, Sunil D. Homology modeling and docking studies of Bcl-2 and Bcl-xL with small molecule inhibitors: identification and functional studies. Curr Top Med Chem. 2018;18:2633–2663. https://doi.org/10.2174/1568026619666190119144819

Article  CAS  PubMed  Google Scholar 

Kim S, Park H-S, Oh B-H. Computational design of an apoptogenic protein that binds BCL-xL and MCL-1 simultaneously and potently. Comput Struct Biotechnol J. 2022;20:3019–3029. https://doi.org/10.1016/j.csbj.2022.06.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry. 2005;70:222–230. https://doi.org/10.1007/s10541-005-0104-5

Article  CAS  PubMed  Google Scholar 

Ye Y, Zhang T, Yuan H, Li D, Lou H, Fan P. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J Med Chem. 2017;60:6353–6363. https://doi.org/10.1021/acs.jmedchem.7b00679

Article  CAS  PubMed  Google Scholar 

Wang R, Krasniqi B, Li Y, Dehaen W. Triphenylphosphonium-linked derivative of allobetulin: preparation, anticancer properties and their mechanism of inhibiting SGC-7901 cells proliferation. Bioorg Chem. 2022;126:105853. https://doi.org/10.1016/j.bioorg.2022.105853

Article  CAS  PubMed  Google Scholar 

Li Y, Zeng Q, Wang R, Wang B, Chen R, Wang N, et al. Synthesis and discovery of mitochondria-targeting oleanolic acid derivatives for potential PI3K inhibition. Fitoterapia 2022;162:105291 https://doi.org/10.1016/j.fitote.2022.105291

Article  CAS  PubMed  Google Scholar 

Ma L, Wang X, Li W, Li T, Xiao S, Lu J, et al. Rational design, synthesis and biological evaluation of triphenylphosphonium-ginsenoside conjugates as mitochondria-targeting anti-cancer agents. Bioorg Chem. 2020;103:104150. https://doi.org/10.1016/j.bioorg.2020.104150

Article  CAS  PubMed  Google Scholar 

Reddy CA, Somepalli V, Golakoti T, Kanugula AKR, Karnewar S, Rajendiran K, et al. Mitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin. PLoS ONE. 2014;9:e89351. https://doi.org/10.1371/journal.pone.0089351

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jara JA, Castro-Castillo V, Saavedra-Olavarria J, Peredo L, Pavanni M, Jana F, et al. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J Med Chem. 2014;57:2440–2454. https://doi.org/10.1021/jm500174v

Article  CAS  PubMed  Google Scholar 

Tsyganov DV, Samet AV, Silyanova EA, Ushkarov VI, Varakutin AE, Chernysheva NB, et al. Synthesis and antiproliferative activity of triphenylphosphonium derivatives of natural allylpolyalkoxybenzenes. ACS Omega. 2022;7:3369–3383. https://doi.org/10.1021/acsomega.1c05515

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terekhova NV, Tatarinov DA, Shaihutdinova ZM, Pashirova TN, Lyubina AP, Voloshina AD, et al. Design and synthesis of amphiphilic 2-hydroxybenzylphosphonium salts with antimicrobial and antitumor dual action. Bioorg Med Chem Lett. 2020;30:127234 https://doi.org/10.1016/j.bmcl.2020.127234

Article  CAS  PubMed  Google Scholar 

Sommers KJ, Michaud ME, Hogue CE, Scharnow AM, Amoo LE, Petersen AA, et al. Quaternary phosphonium compounds: an examination of non-nitrogenous cationic amphiphiles that evade disinfectant resistance. ACS Infect Dis. 2022;8:387–397. https://doi.org/10.1021/acsinfecdis.1c00611

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif