Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, et al. Mitochondria-targeted triphenylphosphonium-besrc compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev. 2017;117:10043–10120. https://doi.org/10.1021/acs.chemrev.7b00042
Article CAS PubMed PubMed Central Google Scholar
Battogtokha G, Choia YS, Kanga DS, Parka SJ, Shim MS, Huh KM, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B. 2018;8:862–880. https://doi.org/10.1016/j.apsb.2018.05.006
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Lopez M, Joseph J, et al. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol. 2018;14:316–27. https://doi.org/10.1016/j.redox.2017.09.020
Article CAS PubMed Google Scholar
Battogtokh G, Cho Y-Y, Lee JY, Lee HS, Kang HC. Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment. Front Pharmacol. 2018;9:922 https://doi.org/10.3389/fphar.2018.00922
Article CAS PubMed PubMed Central Google Scholar
Jeena MT, Kim S, Jin S, Ryu J-H. Recent progress in mitochondria-targeted drug and drug-free agents for cancer therapy. Cancers. 2020;12:4 https://doi.org/10.3390/cancers12010004
Wang J, Li J, Xiao Y, Fu B, Qin Z. TPP-based mitocans: a potent strategy for anticancer drug design. RSC Med Chem. 2020;11:858–875. https://doi.org/10.1039/c9md00572b
Article CAS PubMed PubMed Central Google Scholar
Pashirova TN, Nemtarev AV, Souto EB, Mironov VF. Triarylphosphonium compounds as effective vectors for mitochondria-targeted delivery systems: decoration strategies and prospects for clinical application. Russ Chem Rev. 2023;92:RCR5095. https://doi.org/10.59761/RCR5095
Jung K, Reszka R. Mitochondria as subcellular targets for clinically useful anthracyclines. Adv Drug Deliv Rev. 2001;49:87–105. https://doi.org/10.1016/S0169-409X(01)00128-4
Article CAS PubMed Google Scholar
Esfandyari-Manesh M, Mohammadi A, Atyabi F, Ebrahimi SM, Shahmoradi E, Amini M, et al. Enhancement mitochondrial apoptosis in breast cancer cells by paclitaxeltriphenylphosphonium conjugate in DNA aptamer modified nanoparticles. J Drug Deliv Sci Technol. 2019;54:101228 https://doi.org/10.1016/j.jddst.2019.101228
Marrache S, Pathak RK, Dhar S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc Natl Acad Sci USA. 2014;111:10444–10449. https://doi.org/10.1073/pnas.1405244111
Article CAS PubMed PubMed Central Google Scholar
Smith RAJ, Hartley RC, Cocheme HM, Murphy MP. Mitochondrial pharmacology. Trends Pharm Sci. 2012;33:341–352. https://doi.org/10.1016/j.tips.2012.03.010
Article CAS PubMed Google Scholar
Herst PM, Rowe MR, Carson GM, Berridge MV. Functional mitochondria in health and disease. Front Endocrinol. 2017;8:296. https://doi.org/10.3389/fendo.2017.00296/full
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21:85–100. https://doi.org/10.1038/s41580-019-0173-8
Article CAS PubMed Google Scholar
Debatin K-M. Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother. 2004;53:153–159. https://doi.org/10.1007/s00262-003-0474-8
Article PubMed PubMed Central Google Scholar
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, et al. Mito-bomb: targeting mitochondria for cancer therapy. Adv. Mater. 2021;e2007778. https://doi.org/10.1002/adma.202007778.
Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20:471–480. https://doi.org/10.1038/s41568-020-0262-1
Article CAS PubMed Google Scholar
Salam AAA, Nayek U, Sunil D. Homology modeling and docking studies of Bcl-2 and Bcl-xL with small molecule inhibitors: identification and functional studies. Curr Top Med Chem. 2018;18:2633–2663. https://doi.org/10.2174/1568026619666190119144819
Article CAS PubMed Google Scholar
Kim S, Park H-S, Oh B-H. Computational design of an apoptogenic protein that binds BCL-xL and MCL-1 simultaneously and potently. Comput Struct Biotechnol J. 2022;20:3019–3029. https://doi.org/10.1016/j.csbj.2022.06.021
Article CAS PubMed PubMed Central Google Scholar
Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry. 2005;70:222–230. https://doi.org/10.1007/s10541-005-0104-5
Article CAS PubMed Google Scholar
Ye Y, Zhang T, Yuan H, Li D, Lou H, Fan P. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J Med Chem. 2017;60:6353–6363. https://doi.org/10.1021/acs.jmedchem.7b00679
Article CAS PubMed Google Scholar
Wang R, Krasniqi B, Li Y, Dehaen W. Triphenylphosphonium-linked derivative of allobetulin: preparation, anticancer properties and their mechanism of inhibiting SGC-7901 cells proliferation. Bioorg Chem. 2022;126:105853. https://doi.org/10.1016/j.bioorg.2022.105853
Article CAS PubMed Google Scholar
Li Y, Zeng Q, Wang R, Wang B, Chen R, Wang N, et al. Synthesis and discovery of mitochondria-targeting oleanolic acid derivatives for potential PI3K inhibition. Fitoterapia 2022;162:105291 https://doi.org/10.1016/j.fitote.2022.105291
Article CAS PubMed Google Scholar
Ma L, Wang X, Li W, Li T, Xiao S, Lu J, et al. Rational design, synthesis and biological evaluation of triphenylphosphonium-ginsenoside conjugates as mitochondria-targeting anti-cancer agents. Bioorg Chem. 2020;103:104150. https://doi.org/10.1016/j.bioorg.2020.104150
Article CAS PubMed Google Scholar
Reddy CA, Somepalli V, Golakoti T, Kanugula AKR, Karnewar S, Rajendiran K, et al. Mitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin. PLoS ONE. 2014;9:e89351. https://doi.org/10.1371/journal.pone.0089351
Article CAS PubMed PubMed Central Google Scholar
Jara JA, Castro-Castillo V, Saavedra-Olavarria J, Peredo L, Pavanni M, Jana F, et al. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J Med Chem. 2014;57:2440–2454. https://doi.org/10.1021/jm500174v
Article CAS PubMed Google Scholar
Tsyganov DV, Samet AV, Silyanova EA, Ushkarov VI, Varakutin AE, Chernysheva NB, et al. Synthesis and antiproliferative activity of triphenylphosphonium derivatives of natural allylpolyalkoxybenzenes. ACS Omega. 2022;7:3369–3383. https://doi.org/10.1021/acsomega.1c05515
Article CAS PubMed PubMed Central Google Scholar
Terekhova NV, Tatarinov DA, Shaihutdinova ZM, Pashirova TN, Lyubina AP, Voloshina AD, et al. Design and synthesis of amphiphilic 2-hydroxybenzylphosphonium salts with antimicrobial and antitumor dual action. Bioorg Med Chem Lett. 2020;30:127234 https://doi.org/10.1016/j.bmcl.2020.127234
Article CAS PubMed Google Scholar
Sommers KJ, Michaud ME, Hogue CE, Scharnow AM, Amoo LE, Petersen AA, et al. Quaternary phosphonium compounds: an examination of non-nitrogenous cationic amphiphiles that evade disinfectant resistance. ACS Infect Dis. 2022;8:387–397. https://doi.org/10.1021/acsinfecdis.1c00611
Comments (0)