Li X, Wei W, Tao L, Zeng J, Zhu Y, Yang T, et al. Design, synthesis and biological evaluation of a new class of 7H-pyrrolo[2,3-d]pyrimidine derivatives as Mps1 inhibitors for the treatment of breast cancer. Eur J Med Chem. 2023;245:114887. https://doi.org/10.1016/j.ejmech.2022.114887.
Article CAS PubMed Google Scholar
Lu J, Huang Y, Huang J, He R, Huang M, Lu X, et al. Discovery of the first examples of threonine tyrosine kinase PROTAC degraders. J Med Chem. 2022;65:2313–28. https://doi.org/10.1021/acs.jmedchem.1c01768.
Article CAS PubMed Google Scholar
Ling Y, Zhang X, Bai Y, Li P, Wei C, Song T, et al. Overexpression of Mps1 in colon cancer cells attenuates the spindle assembly checkpoint and increases aneuploidy. Biochem Biophys Res Commun. 2014;450:1690–5. https://doi.org/10.1016/j.bbrc.2014.07.071.
Article CAS PubMed Google Scholar
Simon Serrano S, Sime W, Abassi Y, Daams R, Massoumi R, Jemaà M. Inhibition of mitotic kinase Mps1 promotes cell death in neuroblastoma. Sci Rep. 2020;10:11997. https://doi.org/10.1038/s41598-020-68829-y.
Article CAS PubMed PubMed Central Google Scholar
Xie Y, Wang A, Lin J, Wu L, Zhang H, Yang X, et al. Mps1/TTK: a novel target and biomarker for cancer. J Drug Target. 2017;25:112–8. https://doi.org/10.1080/1061186X.2016.1258568.
Article CAS PubMed Google Scholar
Kaistha BP, Honstein T, Müller V, Bielak S, Sauer M, Kreider R, et al. Key role of dual specificity kinase TTK in proliferation and survival of pancreatic cancer cells. Br J Cancer. 2014;111:1780–7. https://doi.org/10.1038/bjc.2014.460.
Article CAS PubMed PubMed Central Google Scholar
Schulze VK, Klar U, Kosemund D, Wengner AM, Siemeister G, Stöckigt D, et al. Treating cancer by spindle assembly checkpoint abrogation: discovery of two clinical candidates, BAY 1161909 and BAY 1217389, targeting MPS1 kinase. J Med Chem. 2020;63:8025–42. https://doi.org/10.1021/acs.jmedchem.9b02035.
Article CAS PubMed Google Scholar
Wang W, Yang Y, Gao Y, Xu Q, Wang F, Zhu S, et al. Structural and mechanistic insights into Mps1 kinase activation. J Cell Mol Med. 2009;13:1679–94. https://doi.org/10.1111/j.1582-4934.2008.00605.x.
Woodward HL, Innocenti P, Cheung KJ, Hayes A, Roberts J, Henley AT, et al. Introduction of a methyl group curbs metabolism of pyrido[3,4-d]pyrimidine monopolar spindle 1 (MPS1) inhibitors and enables the discovery of the phase 1 clinical candidate N2-(2-Ethoxy-4-(4-methyl-4H-1,2,4-triazol-3-yl)phenyl)-6-methyl-N8-neopentylpyrido[3,4-d]pyrimidine-2,8-diamine (BOS172722). J Med Chem. 2018;61:8226–40. https://doi.org/10.1021/acs.jmedchem.8b00690.
Article CAS PubMed PubMed Central Google Scholar
Colombo R, Caldarelli M, Mennecozzi M, Giorgini ML, Sola F, Cappella P, et al. Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase. Cancer Res. 2010;70:10255–64. https://doi.org/10.1158/0008-5472.CAN-10-2101.
Article CAS PubMed Google Scholar
Liu Y, Laufer R, Patel NK, Ng G, Sampson PB, Li SW, et al. Discovery of pyrazolo[1,5-a]pyrimidine TTK inhibitors: CFI-402257 is a potent, selective, bioavailable anticancer agent. ACS Med Chem Lett. 2016;7:671–5. acsmedchemlett.5b00485.
Article CAS PubMed PubMed Central Google Scholar
Clinical trials, an official website of the U.S. Department of Health and Human Services, National Institutes of Health, National Library of Medicine, and National Center for Biotechnology Information. https://www.clinicaltrials.gov/ (accessed 2024-03-11).
M. Serafim RA, da Silva Santiago A, Schwalm MP, Hu Z, Dos Reis CV, Takarada JE, et al. Development of the first covalent monopolar spindle kinase 1 (MPS1/TTK) inhibitor. J Med Chem. 2022;65:3173–92. https://doi.org/10.1021/acs.jmedchem.1c01165.
Article CAS PubMed Google Scholar
Vijayan RSK, Kihlberg J, Cross JB, Poongavanam V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discov Today. 2022;27:967–84. https://doi.org/10.1016/j.drudis.2021.11.023.
Article CAS PubMed Google Scholar
Pillai N, Dasgupta A, Sudsakorn S, Fretland J, Mavroudis PD. Machine Learning guided early drug discovery of small molecules. Drug Discov Today. 2022;27:2209–15. https://doi.org/10.1016/j.drudis.2022.03.017.
Article CAS PubMed Google Scholar
Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA Jr, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020;19:353–64. https://doi.org/10.1038/s41573-019-0050-3.
Article CAS PubMed Google Scholar
Brown N, Ertl P, Lewis R, Luksch T, Reker D, Schneider N. Artificial intelligence in chemistry and drug design. J Comput Aided Mol Des. 2020;34:709–15. https://doi.org/10.1007/s10822-020-00317-x.
Article CAS PubMed Google Scholar
Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57:4977–5010. https://doi.org/10.1021/jm4004285.
Article CAS PubMed PubMed Central Google Scholar
Morris CJ, Stern JA, Stark B, Christopherson M, Della Corte D. MILCDock: machine learning enhanced consensus docking for virtual screening in drug discovery. J Chem Inf Model. 2022;62:5342–50. https://doi.org/10.1021/acs.jcim.2c00705.
Article CAS PubMed Google Scholar
Huo D, Wang S, Kong Y, Qin Z, Yan A. Discovery of novel epidermal growth factor receptor (EGFR) inhibitors using computational approaches. J Chem Inf Model. 2022;62:5149–64. https://doi.org/10.1021/acs.jcim.1c00884.
Article CAS PubMed Google Scholar
Adeshina YO, Deeds EJ, Karanicolas J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc Natl Acad Sci USA. 2020;117:18477–88. https://doi.org/10.1073/pnas.2000585117.
Article CAS PubMed PubMed Central Google Scholar
Göller AH, Kuhnke L, Montanari F, Bonin A, Schneckener S, Ter Laak A, et al. Bayer’s in silico ADMET platform: a journey of machine learning over the past two decades. Drug Discov Today. 2020;25:1702–9. https://doi.org/10.1016/j.drudis.2020.07.001.
Article CAS PubMed Google Scholar
Muegge I, Bergner A, Kriegl JM. Computer-aided drug design at Boehringer Ingelheim. J Comput Aided Mol Des. 2017;31:275–85. https://doi.org/10.1007/s10822-016-9975-3.
Article CAS PubMed Google Scholar
Ferreira LLG, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discov Today. 2019;24:1157–65. https://doi.org/10.1016/j.drudis.2019.03.015.
Article CAS PubMed Google Scholar
Al-Imam AM, Daoud S, Hatmal MM, Taha MO. Augmenting bioactivity by docking-generated multiple ligand poses to enhance machine learning and pharmacophore modelling: discovery of new TTK inhibitors as case study. Mol Inf. 2023;42:2300022. https://doi.org/10.1002/minf.202300022.
Lyu J, Wang S, Balius TE, Singh I, Levit A, Moroz YS, et al. Ultra-large library docking for discovering new chemotypes. Nature. 2019;566:224–9. https://doi.org/10.1038/s41586-019-0917-9.
Article CAS PubMed PubMed Central Google Scholar
Stasiulewicz A, Lesniak A, Bujalska-Zadrożny M, Pawiński T, Sulkowska JI. Identification of novel CB2 ligands through virtual screening and in vitro evaluation. J Chem Inf Model. 2023;63:1012–27. https://doi.org/10.1021/acs.jcim.2c01503.
Comments (0)