Majumder K, Wu J. Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Int J Mol Sci. 2015;16:256–83. https://doi.org/10.3390/ijms16010256.
Brouwers S, Sudano I, Kokubo Y, Sulaica EM. Arterial hypertension. Lancet. 2021;398:249–61. https://doi.org/10.1016/S0140-6736(21)00221-X.
Article PubMed CAS Google Scholar
Abouelkheir M, El-Metwally TH. Dipeptidyl peptidase-4 inhibitors can inhibit angiotensin converting enzyme. Eur J Pharmacol. 2019;862:172638. https://doi.org/10.1016/j.ejphar.2019.172638.
Article PubMed CAS Google Scholar
Cheung BM, Li C. Diabetes and hypertension: is there a common metabolic pathway? Curr Atheroscler Rep. 2012;14:160–6. https://doi.org/10.1007/s11883-012-0227-2.
Article PubMed PubMed Central CAS Google Scholar
Andersen ES, Deacon CF, Holst JJ. Do we know the true mechanism of action of the DPP‐4 inhibitors? Diab Obes Metab. 2018;20:34–41. https://doi.org/10.1111/dom.13018.
Udenigwe CC, Mohan A. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. J Funct Foods. 2014;8:45–52. https://doi.org/10.1016/j.jff.2014.03.002.
Udenigwe CC, Aluko RE. Food protein‐derived bioactive peptides: production, processing, and potential health benefits. J Food Sci. 2012;77:R11–24. https://doi.org/10.1111/j.1750-3841.2011.02455.x.
Article PubMed CAS Google Scholar
Gourgari E, Wilhelm EE, Hassanzadeh H, Aroda VR, Shoulson I. A comprehensive review of the FDA-approved labels of diabetes drugs: indications, safety, and emerging cardiovascular safety data. J Diab Complicat. 2017;31:1719–27. https://doi.org/10.1016/j.jdiacomp.2017.08.005.
Möller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr. 2008;47:171–82. https://doi.org/10.1007/s00394-008-0710-2.
Article PubMed CAS Google Scholar
Zhou T, Liu Z, Pei J, Pan D, Gao X, Dang Y, et al. Novel broccoli-derived peptides hydrolyzed by trypsin with dual-angiotensin I-converting enzymes and dipeptidyl peptidase-IV-inhibitory activities. J Agric Food Chem. 2021;69:10885–92. https://doi.org/10.1021/acs.jafc.1c02985.
Article PubMed CAS Google Scholar
Gu Y, Li X, Qi X, Ma Y, Chan ECY. In silico identification of novel ACE and DPP-IV inhibitory peptides derived from buffalo milk proteins and evaluation of their inhibitory mechanisms. Amino Acids. 2023;55:161–71. https://doi.org/10.1007/s00726-02203202-z.
Article PubMed CAS Google Scholar
Thakur S, Chhimwal J, Joshi R, Kumari M, Padwad Y, Kumar R. Evaluating peptides of picrorhiza kurroa and their inhibitory potential against ACE, DPP-IV, and oxidative stress. J Proteome Res. 2021;20:3798–813. https://doi.org/10.1021/acs.jproteome.1c00081.
Article PubMed CAS Google Scholar
Guohua H, Yanhua L, Rengang M, Dongzhi W, Zhengzhi M, Hua Z. Aphrodisiac properties of Allium tuberosum seeds extract. J Ethnopharmacol. 2009;122:579–82. https://doi.org/10.1016/j.jep.2009.01.018.
Chen C, Cai J, Ren Y-H, Xu Y, Liu H-L, Zhao Y-Y, et al. Antimicrobial activity, chemical composition and mechanism of action of Chinese chive (Allium tuberosum Rottler) extracts. Front Microbiol. 2022:4349. https://doi.org/10.3389/fmicb.2022.1028627.
Nong NTP, Chen Y-K, Shih W-L, Hsu J-L. Characterization of novel dipeptidyl peptidase-IV inhibitory peptides from soft-shelled turtle yolk hydrolysate using orthogonal bioassay-guided fractionations coupled with in vitro and in silico study. Pharmaceuticals. 2020;13:308. https://doi.org/10.3390/ph13100308.
Article PubMed PubMed Central CAS Google Scholar
Shi Y, Wei G, Huang A. Simulated in vitro gastrointestinal digestion of traditional Chinese Rushan and Naizha cheese: peptidome profiles and bioactivity elucidation. Food Res Int. 2021;142:110201. https://doi.org/10.1016/j.foodres.2021.110201.
Article PubMed CAS Google Scholar
Martini S, Conte A, Tagliazucchi D. Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after in vitro gastro-intestinal digestion. J Proteom. 2019;208:103500. https://doi.org/10.1016/j.jprot.2019.103500.
Chen M, Pan D, Zhou T, Gao X, Dang Y. Novel umami peptide IPIPATKT with dual dipeptidyl peptidase-IV and angiotensin I-converting enzyme inhibitory activities. J Agric Food Chem. 2021;69:5463–70. https://doi.org/10.1021/acs.jafc.0c07138.
Article PubMed CAS Google Scholar
Vásquez-Villanueva R, Muñoz-Moreno L, Carmena MJ, Marina ML, García MC. In vitro antitumor and hypotensive activity of peptides from olive seeds. J Funct Foods. 2018;42:177–84. https://doi.org/10.1016/j.jff.2017.12.062.
Esteve C, Marina M, García M. Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem. 2015;167:272–80. https://doi.org/10.1016/j.foodchem.2014.06.090.
Article PubMed CAS Google Scholar
Sasaki C, Tamura S, Tohse R, Fujita S, Kikuchi M, Asada C, et al. Isolation and identification of an angiotensin I-converting enzyme inhibitory peptide from pearl oyster (Pinctada fucata) shell protein hydrolysate. Process Biochem. 2019;77:137–42. https://doi.org/10.1016/j.procbio.2018.11.017.
Nongonierma AB, FitzGerald RJ. Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. J Funct Foods. 2013;5:1909–17. https://doi.org/10.1016/j.jff.2013.09.012.
García-Mora P, Martín-Martínez M, Bonache MA, González-Múniz R, Peñas E, Frias J, et al. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem. 2017;221:464–72. https://doi.org/10.1016/j.foodchem.2016.10.087.
Article PubMed CAS Google Scholar
Wang R, Lu X, Sun Q, Gao J, Ma L, Huang J. Novel ACE inhibitory peptides derived from simulated gastrointestinal digestion in vitro of sesame (Sesamum indicum L.) protein and molecular docking study. Int J Mol Sci. 2020;21:1059. https://doi.org/10.3390/ijms21031059.
Article PubMed PubMed Central CAS Google Scholar
Nong NTP, Hsu J-L. Characteristics of food protein-derived antidiabetic bioactive peptides: a literature update. Int J Mol Sci. 2021;22:9508. https://doi.org/10.3390/ijms22179508.
Article PubMed PubMed Central CAS Google Scholar
Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept. 1999;85:9–24. https://doi.org/10.1016/S0167-0115(99)00089-0.
Article PubMed CAS Google Scholar
You H, Wu T, Wang W, Li Y, Liu X, Ding L. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res Int. 2022;156:111176. https://doi.org/10.1016/j.foodres.2022.111176.
Article PubMed CAS Google Scholar
Xu F, Yao Y, Xu X, Wang M, Pan M, Ji S, et al. Identification and quantification of DPP-IV-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. J Agric Food Chem. 2019;67:3679–90. https://doi.org/10.1021/acs.jafc.9b01069.
Article PubMed CAS Google Scholar
Nongonierma AB, Cadamuro C, Le Gouic A, Mudgil P, Maqsood S, FitzGerald RJ. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem. 2019;279:70–9. https://doi.org/10.1016/j.foodchem.2018.11.142.
Comments (0)