K.D. Miller, L. Nogueira, A.B. Mariotto et al., Cancer treatment and survivorship statistics, 2019. Cancer J. Clin. 69(5), 363–385 (2019). https://doi.org/10.3322/caac.21565
K.R. Hess, G.R. Varadhachary, S.H. Taylor et al., Metastatic patterns in adenocarcinoma. Cancer 106(7), 1624–1633 (2006). https://doi.org/10.1002/cncr.21778
R.N. Kaplan, R.D. Riba, S. Zacharoulis et al., VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069), 820–827 (2005). https://doi.org/10.1038/nature04186
Article CAS PubMed PubMed Central Google Scholar
Y. Sharon, Y. Raz, N. Cohen et al., Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast Cancer. Cancer Res. 75(6), 963–973 (2015). https://doi.org/10.1158/0008-5472.Can-14-1990
Article CAS PubMed Google Scholar
Y. Tang, Y. Lu, Y. Chen et al., Pre-metastatic niche triggers SDF-1/CXCR4 axis and promotes organ colonisation by hepatocellular circulating tumour cells via downregulation of Prrx1. J. Experimental Clin. Cancer Res. 38(1) (2019). https://doi.org/10.1186/s13046-019-1475-6
Y. Liu, X. Cao, Characteristics and significance of the pre-metastatic niche. Cancer Cell. 30(5), 668–681 (2016). https://doi.org/10.1016/j.ccell.2016.09.011
Article CAS PubMed Google Scholar
Z. Zeng, Y. Li, Y. Pan et al., Cancer-derived exosomal mir-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9(1) (2018). https://doi.org/10.1038/s41467-018-07810-w
N. Leary, S. Walser, Y. He et al., Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J. Extracell. Vesicles. 11(2) (2022). https://doi.org/10.1002/jev2.12197
A. Becker, B.K. Thakur, J.M. Weiss, H.S. Kim, H. Peinado, D. Lyden, Extracellular vesicles in Cancer: cell-to-cell mediators of Metastasis. Cancer Cell. 30(6), 836–848 (2016). https://doi.org/10.1016/j.ccell.2016.10.009
Article CAS PubMed PubMed Central Google Scholar
Z.F. Wen, H. Liu, R. Gao et al., Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J. Immunother Cancer 18(1), 151 (2018). https://doi.org/10.1186/s40425-018-0452-5
Y.Q. Chen, P.C. Li, N. Pan et al., Tumor-released autophagosomes induces CD4(+) T cell-mediated immunosuppression via a TLR2-IL-6 cascade. J. Immunother Cancer. 12(1), 178 (2019). https://doi.org/10.1186/s40425-019-0646-5
R. Gao, J. Ma, Z. Wen et al., Tumor cell-released autophagosomes (TRAP) enhance apoptosis and immunosuppressive functions of neutrophils. OncoImmunology. 7(6) (2018). https://doi.org/10.1080/2162402x.2018.1438108
X. Sun, X. Wang, C. Yan et al., Tumor cell-released LC3-positive EVs promote lung metastasis of breast cancer through enhancing premetastatic niche formation. Cancer Sci. 113(10), 3405–3416 (2022). https://doi.org/10.1111/cas.15507
Article CAS PubMed PubMed Central Google Scholar
M. Zhou, Z. Wen, F. Cheng et al., Tumor-released autophagosomes induce IL-10-producing B cells with suppressive activity on T lymphocytes via TLR2-MyD88-NF-kappaB signal pathway. Oncoimmunology 5(7), e1180485 (2016). https://doi.org/10.1080/2162402X.2016.1180485
Article CAS PubMed PubMed Central Google Scholar
N. Cousin, S. Cap, M. Dihr, C. Tacconi, M. Detmar, L.C. Dieterich, Lymphatic PD-L1 expression restricts tumor-specific CD8 + T-cell responses. Cancer Res. 81(15), 4133–4144 (2021). https://doi.org/10.1158/0008-5472.Can-21-0633
Article CAS PubMed PubMed Central Google Scholar
V. Fleming, X. Hu, C. Weller et al., Melanoma Extracellular vesicles generate immunosuppressive myeloid cells by upregulating PD-L1 via TLR4 signaling. Cancer Res. 79(18), 4715–4728 (2019). https://doi.org/10.1158/0008-5472.Can-19-0053
Article CAS PubMed Google Scholar
I. Arkhypov, F.G. Özbay Kurt, R. Bitsch et al., HSP90α induces immunosuppressive myeloid cells in melanoma via TLR4 signaling. J. Immunother. Cancer 10(9) (2022). https://doi.org/10.1136/jitc-2022-005551
S.-H. Choi, R. Harkewicz, J.H. Lee et al., Lipoprotein accumulation in macrophages via toll-like receptor-4–dependent fluid phase uptake. Circul. Res. 104(12), 1355–1363 (2009). https://doi.org/10.1161/circresaha.108.192880
H.-J. Liu, Y. Qin, Z.-H. Zhao et al., Lentinan-functionalized selenium nanoparticles target tumor cell mitochondria via TLR4/TRAF3/MFN1 pathway. Theranostics. 10(20), 9083–9099 (2020). https://doi.org/10.7150/thno.46467
Article CAS PubMed PubMed Central Google Scholar
C.-H. Liu, Z.-H. Huang, S.-C. Huang, T.-S. Jou, Endocytosis of peroxiredoxin 1 links sterile inflammation to immunoparalysis in pediatric patients following cardiopulmonary bypass. Redox Biol. 46 (2021). https://doi.org/10.1016/j.redox.2021.102086
M. Tian, K. Chen, J. Huang et al., Asiatic acid inhibits angiogenesis and vascular permeability through the VEGF/VEGFR2 signaling pathway to inhibit the growth and metastasis of breast cancer in mice. Phytother. Res. 35(11), 6389–6400 (2021). https://doi.org/10.1002/ptr.7292
Article CAS PubMed Google Scholar
E. Alsina-Sanchis, R. Mülfarth, A. Fischer, Control of tumor progression by angiocrine factors. Cancers 13(11) (2021). https://doi.org/10.3390/cancers13112610
Y.-H. Wang, Y.-Y. Dong, W.-M. Wang et al., Vascular endothelial cells facilitated HCC invasion and metastasis through the akt and NF-κB pathways induced by paracrine cytokines. J. Experimental Clin. Cancer Res. 32(1) (2013). https://doi.org/10.1186/1756-9966-32-51
Z. Ma, K. Wei, F. Yang et al., Tumor-derived exosomal mir-3157-3p promotes angiogenesis, vascular permeability and metastasis by targeting TIMP/KLF2 in non-small cell lung cancer. Cell Death Dis. 12(9) (2021). https://doi.org/10.1038/s41419-021-04037-4
Y. Yokota, T. Noda, Y. Okumura et al., Serum exosomal miR-638 is a prognostic marker of HCC via downregulation of VE‐cadherin and ZO‐1 of endothelial cells. Cancer Sci. 112(3), 1275–1288 (2021). https://doi.org/10.1111/cas.14807
Article CAS PubMed PubMed Central Google Scholar
S. Kumar, M. Chatterjee, P. Ghosh, K.K. Ganguly, M. Basu, M.K. Ghosh, Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis. 10(4), 1318–1350 (2023). https://doi.org/10.1016/j.gendis.2022.07.024
Article CAS PubMed Google Scholar
S.-R. Woo, M.E. Turnis, M.V. Goldberg et al., Immune Inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote Tumoral Immune escape. Cancer Res. 72(4), 917–927 (2012). https://doi.org/10.1158/0008-5472.Can-11-1620
Article CAS PubMed Google Scholar
P. Sidaway, Atezolizumab effective against advanced-stage disease. Nat. Reviews Urol. 13(5), 238–238 (2016). https://doi.org/10.1038/nrurol.2016.60
P. Schmid, S. Adams, H.S. Rugo et al., Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379(22), 2108–2121 (2018). https://doi.org/10.1056/NEJMoa1809615
Article CAS PubMed Google Scholar
S. Adams, J.R. Diamond, E. Hamilton et al., Atezolizumab Plus nab-Paclitaxel in the treatment of metastatic triple-negative breast Cancer with 2-Year Survival follow-up. JAMA Oncol. 5(3) (2019). https://doi.org/10.1001/jamaoncol.2018.5152
J.-R. Hu, R. Florido, E.J. Lipson et al., Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovascular. Res. 115(5), 854–868 (2019). https://doi.org/10.1093/cvr/cvz026
D.B. Johnson, S. Chandra, J.A. Sosman, Immune checkpoint inhibitor toxicity in 2018. JAMA. 320(16) (2018). https://doi.org/10.1001/jama.2018.13995
N. Harbeck, H. Zhang, C.H. Barrios et al., LBA11 IMpassion031: results from a phase III study of neoadjuvant (neoadj) atezolizumab + chemotherapy in early triple-negative breast cancer (TNBC). Ann. Oncol. 31 (2020). https://doi.org/10.1016/j.annonc.2020.08.2239
H. Dong, L. Zhang, S. Liu, Targeting HMGB1: an available therapeutic strategy for breast Cancer therapy. Int. J. Biol. Sci. 18(8), 3421–3434 (2022). https://doi.org/10.7150/ijbs.73504
Article CAS PubMed PubMed Central Google Scholar
A. Hoshino, B. Costa-Silva, T.-L. Shen et al., Tumour exosome integrins determine organotropic metastasis. Nature 527(7578), 329–335 (2015). https://doi.org/10.1038/nature15756
Comments (0)