Single-point macromolecular proton fraction mapping using a 0.3 T permanent magnet MRI system: phantom and healthy volunteer study

Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev. 2001;30:871–927. https://doi.org/10.1152/physrev.2001.81.2.871.

Article  Google Scholar 

van der Weijden CWJ, Biondetti E, Gutmann IW, et al. Quantitative myelin imaging with MRI and PET: an overview of techniques and their validation status. Brain. 2023;146:1243–66. https://doi.org/10.1093/brain/awac436.

Article  PubMed  Google Scholar 

Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the central nervous system: structure, function, and pathology. Physiol Rev. 2019;99:1381–431. https://doi.org/10.1152/physrev.00031.2018.

Article  CAS  PubMed  Google Scholar 

van der Weijden CWJ, García DV, Borra RJH, et al. Myelin quantification with MRI: a systematic review of accuracy and reproducibility. Neuroimage. 2021;226:117561. https://doi.org/10.1016/j.neuroimage.2020.117561.

Article  PubMed  Google Scholar 

Schneider R, Matusche B, Ladopoulos T, et al. Quantification of individual remyelination during short-term disease course by synthetic magnetic resonance imaging. Brain Commun. 2022;4:fcac172. https://doi.org/10.1093/braincomms/fcac172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCreary CR, Bjarnason TA, Skihar V, Mitchell JR, Yong VW, Dunn JF. Multiexponential T2 and magnetization transfer MRI of demyelination and remyelination in murine spinal cord. Neuroimage. 2009;45:1173–82. https://doi.org/10.1016/j.neuroimage.2008.12.071.

Article  PubMed  Google Scholar 

Merkler D, Boretius S, Stadelmann C, et al. Multicontrast MRI of remyelination in the central nervous system. NMR Biomed. 2005;18:395–403. https://doi.org/10.1002/nbm.972.

Article  PubMed  Google Scholar 

Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage. 2021;230:117744. https://doi.org/10.1016/j.neuroimage.2021.117744.

Article  PubMed  Google Scholar 

Heath F, Hurley SA, Johansen-Berg H, Sampaio-Baptista C. Advances in noninvasive myelin imaging. Dev Neurobiol. 2018;78:136–51. https://doi.org/10.1002/dneu.22552.

Article  PubMed  Google Scholar 

Piredda GF, Hilbert T, Thiran J-P, Kober T. Probing myelin content of the human brain with MRI: a review. Magn Reson Med. 2021;85:627–52. https://doi.org/10.1002/mrm.28509.

Article  CAS  PubMed  Google Scholar 

Yarnykh VL, Krutenkova EP, Aitmagambetova G, et al. Iron-insensitive quantitative assessment of subcortical gray matter demyelination in multiple sclerosis using the macromolecular proton fraction. AJNR Am J Neuroradiol. 2018;39:618–25. https://doi.org/10.3174/ajnr.A5542.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li K, Li H, Zhang X-Y, et al. Influence of water compartmentation and heterogeneous relaxation on quantitative magnetization transfer imaging in rodent brain tumors. Magn Reson Med. 2016;76:635–44. https://doi.org/10.1002/mrm.25893.

Article  PubMed  Google Scholar 

Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med. 1993;29:759–66. https://doi.org/10.1002/mrm.1910290607.

Article  CAS  PubMed  Google Scholar 

Underhill HR, Rostomily RC, Mikheev AM, Yuan C, Yarnykh VL. Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model. Neuroimage. 2011;54:2052–65. https://doi.org/10.1016/j.neuroimage.2010.10.065.

Article  PubMed  Google Scholar 

Khodanovich MY, Sorokina IV, Glazacheva VY, et al. Histological validation of fast macromolecular proton fraction mapping as a quantitative myelin imaging method in the cuprizone demyelination model. Sci Rep. 2017;7:46686. https://doi.org/10.1038/srep46686.

Article  PubMed  PubMed Central  Google Scholar 

Sled JG, Pike GB. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med. 2001;46:923–31. https://doi.org/10.1002/mrm.1278.

Article  CAS  PubMed  Google Scholar 

Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn Reson Med. 1995;33:475–82. https://doi.org/10.1002/mrm.1910330404.

Article  CAS  PubMed  Google Scholar 

Arnold TC, Freeman CW, Litt B, Stein JM. Low-field MRI: clinical promise and challenges. J Magn Reson Imaging. 2023;57:25–44. https://doi.org/10.1002/jmri.28408.

Article  PubMed  Google Scholar 

Schäper J, Bieri O. Myelin water imaging at 0.55 T using a multigradient-echo sequence. Magn Reson Med. 2023;91:1043–56. https://doi.org/10.1002/mrm.29949.

Article  CAS  PubMed  Google Scholar 

Anisimov NV, Pavlova OS, Pirogov YA, Yarnykh VL. Three-dimensional fast single-point macromolecular proton fraction mapping of the human brain at 0.5 Tesla. Quant Imaging Med Surg. 2020;10:1441–9. https://doi.org/10.21037/qims-19-1057.

Article  PubMed  PubMed Central  Google Scholar 

Marques JP, Simonis FFJ, Webb AG. Low-field MRI: an MR physics perspective: low-field MRI. J Magn Reson Imaging. 2019;49:1528–42. https://doi.org/10.1002/jmri.26637.

Article  PubMed  PubMed Central  Google Scholar 

Hori M, Okubo T, Aoki S, Kumagai H, Araki T. Line scan diffusion tensor MRI at low magnetic field strength: feasibility study of cervical spondylotic myelopathy in an early clinical stage. J Magn Reson Imaging. 2006;23:183–8. https://doi.org/10.1002/jmri.20488.

Article  PubMed  Google Scholar 

Hori M, Aoki S, Okubo T, Ishigame K, Kumagai H, Araki T. Line-scan diffusion tensor MR imaging at 0.2 T: feasibility study. J Magn Reson Imaging. 2005;22:794–8. https://doi.org/10.1002/jmri.20440.

Article  PubMed  Google Scholar 

Yarnykh V, Korostyshevskaya A. Implementation of fast macromolecular proton fraction mapping on 1.5 and 3 Tesla clinical MRI scanners: preliminary experience. J Phys Conf Ser. 2017;886:012010. https://doi.org/10.1088/1742-6596/886/1/012010.

Article  Google Scholar 

Yarnykh VL. Fast macromolecular proton fraction mapping from a single off-resonance magnetization transfer measurement. Magn Reson Med. 2012;68:166–78. https://doi.org/10.1002/mrm.23224.

Article  CAS  PubMed  Google Scholar 

Yarnykh VL. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping: high-resolution fast 3D MPF mapping. Magn Reson Med. 2016;75:2100–6. https://doi.org/10.1002/mrm.25811.

Article  CAS  PubMed  Google Scholar 

Samson RS, Wheeler-Kingshott CAM, Symms MR, Tozer DJ, Tofts PS. A simple correction for B1 field errors in magnetization transfer ratio measurements. Magn Reson Imaging. 2006;24:255–63. https://doi.org/10.1016/j.mri.2005.10.025.

Article  PubMed  Google Scholar 

Yarnykh VL, Kisel AA, Khodanovich MY. Scan-rescan repeatability and impact of B0 and B1 field nonuniformity corrections in single-point whole-brain macromolecular proton fraction mapping. J Magn Reson Imaging. 2020;51:1789–98. https://doi.org/10.1002/jmri.26998.

Article  PubMed  Google Scholar 

Manjón JV, Coupé P, Martí-Bonmatí L, Collins DL, Robles M. Adaptive non-local means denoising of MR images with spatially varying noise levels: spatially adaptive nonlocal denoising. J Magn Reson Imaging. 2010;31:192–203. https://doi.org/10.1002/jmri.22003.

Article  PubMed  Google Scholar 

Soustelle L, Troalen T, Hertanu A, et al. Quantitative magnetization transfer MRI unbiased by on-resonance saturation and dipolar order contributions. Magn Reson Med. 2023;90:875–93. https://doi.org/10.1002/mrm.29678.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif