Li R, Lewis JH, Jia X, et al. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy. Med Phys. 2021;38:2783–94.
Bale HA, Haboub A, MacDowell AA, et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1,600 °C. Nat Mater. 2013;12:40–6.
Article CAS PubMed Google Scholar
Mahalingam S, Kwon D-S, Kang S-G, et al. Multicomponent X-ray shielding using sulfated cerium oxide and bismuth halide composites. Adv Funct Mater. 2018;28:1705161.
Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.
Article CAS PubMed Google Scholar
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
Asgari M, Afarideh H, Ghafoorifard H, et al. Comparison of nano/micro lead, bismuth and tungsten on the gamma shielding properties of the flexible composites against photon in wide energy range (40 keVe662 keV). NET. 2021;53:4142–9.
Asari-shik N, Leila gholamzadeh, Mohsen Khajeh-Aminian, et al. Study the attenuation ability of the composites containing micro and nano-sized tungsten oxide and lead oxide as diagnostic X-ray shields. JRSM. 2017;6(3):15–22.
Scuderi GJ, Brusovanik GV, Campbell DR, et al. Evaluation of non-lead-based protective radiological material in spinal surgery. J Spine. 2005;6:577–82.
Nikbin IM, Shad M, Jafarzadeh GA, et al. An experimental investigation on combined effects of nano-WO3 and nano-Bi2O3 on the radiation shielding properties of magnetite concretes. Prog Nucl Energy. 2019;117:103103.
Cherkashina NI, Pavlenko VI, Noskov AV, et al. Using multilayer polymer PI/Pb composites for protection against X-ray bremsstrahlung in outer space. Acta Astronaut. 2020;170:499–508.
Malekzadeh R, Mehnati P, Sooteh MY, et al. Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth–silicon shields in diagnostic radiology. Radiol Phys Technol. 2019;12:325–34.
Park S, Kim H, Kim Y, et al. Multilayer-structured non-leaded metal/polymer composites for enhanced X-ray shielding. MRS Adv. 2018;3:1789–97.
Hashemi SA, Mousavi SM, Faghihi R, et al. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Radiat Phys Chem Oxf Engl. 2018;146:77–85.
Li R, Yizhuo Gu, Yang Z, et al. Gamma ray shielding property, shielding mechanism and predicting model of continuous basalt fiber reinforced polymer matrix composite containing functional filler. Mater Des. 2017;124:121–30.
Hashim A, Agool IR, Kadhim KJ. Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J Mater Sci: Mater Electron. 2018;29:10369–94.
Akhlaghi P, Miri-Hakimabad H, Rafat-Motavalli L. Effects of shielding the radiosensitive superficial organs of ORNL pediatric phantoms on dose reduction in computed tomography. J Med Phys. 2014;39(4):238–46.
Article PubMed PubMed Central Google Scholar
Nambiar S, Osei EK, Yeow JTW. Polymer nanocomposite-based shielding against diagnostic X-rays. J Appl Polym Sci. 2013;127(6):4939–46.
Sadler PJ, Li H, Sun H. Coordination chemistry of metals in medicine: target sites for bismuth. Coord Chem Rev. 1999;185–186:689–709.
Slikkerveer A, de Wolff FA. Pharmacokinetics and toxicity of bismuth compounds. Drug saf. 1989;4(5):303–23.
Sun H, Sadler PJ. Bismuth antiulcer complexes. In: Topics in Biological Inorganic Chemistry. Berlin Heidelberg: Springer Berlin Heidelberg; 1999. p. 159–85.
Briand GG, Burford N. Bismuth compounds and preparations with biological or medicinal relevance. Chem Rev. 1999;99:2601–58.
Article CAS PubMed Google Scholar
Kobayashi S, Hosodaa N, Takashimab R. Tungsten alloys as radiation protection materials. NIM-A. 1997;390:426–30.
Mehnati P, Arash M, Zakerhamidi MS, et al. Designing and construction of breast shields using silicone composite of bismuth for chest CT. Int J Radiat Res. 2019;17(3):499–504.
Jagdale P, Rovere M, Ronca R, et al. Determination of the X-ray attenuation coefficient of bismuth oxychloride nanoplates in polydimethylsiloxane. J Mater Sci. 2020;55:7095–105.
Abdolahzadeh T, Morshedian J, Ahmadi S, et al. Introducing a novel Polyvinyl chloride/tungsten composites for shielding against gamma and X-ray radiations. Iran J Nucl Med. 2021;29(2):58–64.
AbuAlRoosa NJ, Azmana MN, Amina NAB, et al. Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Med. 2020;78:48–57.
Mehnati P, Malekzadeh R, Divband B, et al. Assessment of the effect of nano-composite shield on radiation risk prevention to breast during computed tomography. IJ Radiology. 2020;17(1): e96002.
Chai H, Tang X, Ni M, et al. Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth(III) oxide. J Appl Polym Sci. 2015. https://doi.org/10.1002/app.43012.
Mehnati P, Sooteh MY, Malekzadeh R, et al. Breast conservation from radiation damage by using nano bismuth shields in chest computed tomography scan. Crescent J Med Biol Sci. 2019;6(1):46–50.
Mehnati P, Arash M, Zakerhamidi MS, et al. Polyurethane compositions of bismuth used for breast shields during chest CT. Int J Radiat Res. 2021;19(2):451–6.
Hohl C, Wildberger JE, Mahnken AH, et al. Radiation dose reduction to breast and thyroid during MDCT: Effectiveness of an in-plane bismuth shield. Acta radiol. 2006;47(6):562–7.
Article CAS PubMed Google Scholar
Mehnati P, Malekzadeh R, Sooteh MY. Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol. 2019;12:6–25.
Comments (0)