Impact of a novel respiratory motion reduction block for myocardial perfusion SPECT image quality: a phantom study

Wheat JM, Currie GM. Incidence and characterization of patient motion in myocardial perfusion SPECT: Part 1. J Nucl Med Technol. 2004;32(2):60–5.

PubMed  Google Scholar 

Wheat JM, Currie GM. Impact of patient motion on myocardial perfusion SPECT diagnostic integrity: Part 2. J Nucl Med Technol. 2004;32(3):158–63.

PubMed  Google Scholar 

Fitzgerald J, Danias PG. Effect of motion on cardiac SPECT imaging: recognition and motion correction. J Nucl Cardiol. 2001;8(6):701–6.

Article  CAS  PubMed  Google Scholar 

Bitarafan A, Rajabi H, Gruy B, Rustgou F, Sharafi AA, Firoozabady H, et al. Respiratory motion detection and correction in ECG-gated SPECT: a new approach. Korean J Radiol. 2008;9(6):490–7.

Article  PubMed  PubMed Central  Google Scholar 

Dey J, Segars WP, Pretorius PH, Walvick RP, Bruyant PP, Dahlberg S, et al. Estimation and correction of cardiac respiratory motion in SPECT in the presence of limited-angle effects due to irregular respiration. Med Phys. 2010;37(12):6453–65.

Article  PubMed  PubMed Central  Google Scholar 

Ko CL, Wu YW, Cheng MF, Yen RF, Wu WC, Tzen KY. Data-driven respiratory motion tracking and compensation in CZT cameras: a comprehensive analysis of phantom and human images. J Nucl Cardiol. 2015;22(2):308–18.

Article  PubMed  Google Scholar 

Pretorius PH, Johnson KL, Dahlberg ST, King MA. Investigation of the physical effects of respiratory motion compensation in a large population of patients undergoing Tc-99m cardiac perfusion SPECT/CT stress imaging. J Nucl Cardiol. 2020;27(1):80–95.

Article  PubMed  Google Scholar 

Dorbala S, Ananthasubramaniam K, Armstrong IS, Chareonthaitawee P, DePuey EG, Einstein AJ, et al. Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation. J Nucl Cardiol. 2018;25(5):1784–846.

Article  PubMed  Google Scholar 

Abufadel A, Eisner RL, Schafer RW. Differences due to collimator blurring in cardiac images with use of circular and elliptic camera orbits. J Nucl Cardiol. 2001;8(4):458–65.

Article  CAS  PubMed  Google Scholar 

Maniawski PJ, Morgan HT, Wackers FJT. Orbit-Related Variation in Spatial Resolution as a Source of Artifactual Defects in Thallium-201 SPECT. J Nucl Med. 1991;32(5):871.

CAS  PubMed  Google Scholar 

Okuda K, Nakajima K, Yoneyama H, Shibutani T, Onoguchi M, Matsuo S, et al. Impact of iterative reconstruction with resolution recovery in myocardial perfusion SPECT: phantom and clinical studies. Sci Rep. 2019;9(1):19618.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ichikawa H, Kato T, Kondo H, Shimada H, Shibutani T, Onoguchi M. Efficacy of a novel respiratory motion reduction block in reducing motion artifact on myocardial perfusion single-photon emission computed tomography. Cureus. 2024;16(5): e60656.

PubMed  PubMed Central  Google Scholar 

Liu YH, Lam PT, Sinusas AJ, Wackers FJ. Differential effect of 180 degrees and 360 degrees acquisition orbits on the accuracy of SPECT imaging: quantitative evaluation in phantoms. J Nucl Med. 2002;43(8):1115–24.

PubMed  Google Scholar 

Maublant JC, Peycelon P, Kwiatkowski F, Lusson JR, Standke RH, Veyre A. Comparison between 180 degrees and 360 degrees data collection in technetium-99m MIBI SPECT of the myocardium. J Nucl Med. 1989;30(3):295–300.

CAS  PubMed  Google Scholar 

Okuda K, Nakajima K, Yamada M, Wakabayashi H, Ichikawa H, Arai H, et al. Optimization of iterative reconstruction parameters with attenuation correction, scatter correction and resolution recovery in myocardial perfusion SPECT/CT. Ann Nucl Med. 2014;28(1):60–8.

Article  PubMed  Google Scholar 

DePuey EG. Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Cardiol. 2012;19(3):551–81.

Article  PubMed  Google Scholar 

O’Connor MK, Kemp B, Anstett F, Christian P, Ficaro EP, Frey E, et al. A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J Nucl Cardiol. 2002;9(4):361–76.

Article  PubMed  Google Scholar 

Polycarpou I, Chrysanthou-Baustert I, Demetriadou O, Parpottas Y, Panagidis C, Marsden PK, et al. Impact of respiratory motion correction on SPECT myocardial perfusion imaging using a mechanically moving phantom assembly with variable cardiac defects. J Nucl Cardiol. 2017;24(4):1216–25.

Article  PubMed  Google Scholar 

Narihiro H, Masahisa O, Osamu H, Hiroyuki K, Masakazu M, Noriko M. Development of a 2-Layer Double-Pump Dynamic Cardiac Phantom. J Nucl Med Technol. 2016;44(1):31–5.

Article  PubMed  Google Scholar 

Javadi H, Mahmoud-Pashazadeh A, Mogharrabi M, Iranpour D, Amini A, Pourbehi M, et al. Comparison of 180 degrees and 360 degrees Arc Data Acquisition to Measure Scintigraphic Parameters from Gated Single Photon Emission Computed Tomography Myocardial Perfusion Imaging: Is There Any Difference? Mol Imaging Radionucl Ther. 2016;25(1):26–31.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif