A multiple regression model for peak skin dose using principal component analysis in interventional radiology

Koenig TR, Wolff D, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures:part 1, characteristics of radiation injury. AJR Am J Roentgenol. 2001;177(1):3–11. https://doi.org/10.2214/ajr.177.1.1770003.

Article  CAS  PubMed  Google Scholar 

Koenig TR, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures:part 2, review of 73 cases and recommendations for minimizing dose delivered to patient. AJR Am J Roentgenol. 2001;177(1):13–20. https://doi.org/10.2214/ajr.177.1.1770013.

Article  CAS  PubMed  Google Scholar 

Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ. Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair. Radiology. 2010;254(2):326–41. https://doi.org/10.1148/radiol.2542082312.

Article  PubMed  Google Scholar 

Kato M, Chida K, Sato T, et al. The necessity of follow-up for radiation skin injuries in patients after percutaneous coronary interventions: radiation skin injuries will often be overlooked clinically. Acta Radiol. 2012;53(9):1040–4. https://doi.org/10.1258/ar.2012.120192.

Article  PubMed  Google Scholar 

Magrassi L, Bongetta D, D’Ercole L, et al. Neuroembolization may expose patients to radiation doses previously linked to tumor induction. Acta Neurochir. 2012;154(1):33–41. https://doi.org/10.1007/s00701-011-1209-9.

Article  PubMed  Google Scholar 

Corrigall RS, Martin CJ, Scott I. Observations of tissue reactions following neuroradiology interventional procedures. J Radiol Prot. 2020;40(1):N9–15. https://doi.org/10.1088/1361-6498/ab5bf4.

Article  CAS  PubMed  Google Scholar 

Imanishi Y, Fukui A, Niimi H, et al. Radiation-induced temporary hair loss as a radiation damage only occurring in patients who had the combination of MDCT and DSA. Eur Radiol. 2005;15(1):41–6. https://doi.org/10.1007/s00330-004-2459-1.

Article  PubMed  Google Scholar 

Chida K, Kato M, Kagaya Y, et al. Radiation dose and radiation protection for patients and physicians during interventional procedure. J Radiat Res. 2010;51(2):97–105. https://doi.org/10.1269/jrr.09112.

Article  PubMed  Google Scholar 

Andersson J, Bednarek DR, Bolch W, et al. Estimation of patient skin dose in fluoroscopy: summary of a joint report by AAPM TG357 and EFOMP. Med Phys. 2021;48(7):e671–96. https://doi.org/10.1002/mp.14910.

Article  PubMed  Google Scholar 

Bor D, Olgar T, Toklu T, et al. Patient doses and dosimetric evaluations in interventional cardiology. Phys Med. 2009;25(1):31–42. https://doi.org/10.1016/j.ejmp.2008.03.002.

Article  PubMed  Google Scholar 

Farah J, Trianni A, Ciraj-Bjelac O, et al. Characterization of XR-RV3 GafChromic® films in standard laboratory and in clinical conditions and means to evaluate uncertainties and reduce errors. Med Phys. 2015;42(7):4211–26. https://doi.org/10.1118/1.4922132.

Article  CAS  PubMed  Google Scholar 

Geryes BH, Hadid-Beurrier L, Waryn MJ, Jean-Pierre A, Farah J. Benchmarking the DACS-integrated radiation dose monitor® skin dose mapping software using XR-RV3 Gafchromic® films. Med Phys. 2018;45(10):4683–92. https://doi.org/10.1002/mp.13125.

Article  CAS  Google Scholar 

Moritake T, Matsumaru Y, Takigawa T, et al. Dose measurement on both patients and operators during neurointerventional procedures using photoluminescence glass dosimeters. AJNR Am J Neuroradiol. 2008;29(10):1910–7. https://doi.org/10.3174/ajnr.A1235.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moritake T, Hayakawa M, Matsumaru Y, et al. Precise mapping system of entrance skin dose during endovascular embolization for cerebral aneurysm. Radiat Meas. 2011;46(12):2103–6. https://doi.org/10.1016/j.radmeas.2011.08.008.

Article  CAS  Google Scholar 

Schonbacher H, Furstner M, Vincke H. High-level dosimetric methods. Radiat Prot Dosimetry. 2009;137(1–2):83–93. https://doi.org/10.1093/rpd/ncp195.

Article  CAS  PubMed  Google Scholar 

Yamamoto T, Yanagida-Miyamoto Y, Iida T, Nanto H. Current status and future prospect of RPL glass dosimeter. Radiat Meas. 2020;136: 106363. https://doi.org/10.1016/j.radmeas.2020.106363.

Article  CAS  Google Scholar 

Ferrari M, Aguiar YQ, Hasan A, et al. Characterization of radiophotoluminescence dosimeters under X-ray irradiation at high doses. IEEE Trans on Nucl Sci. 2024. https://doi.org/10.1109/TNS.2024.3365272.

Article  Google Scholar 

International Electrotechnical Commission. 2010. IEC 60601–2–43, Medical electrical equipment Part 2–43: Particular requirements for the safety of X-ray equipment for interventional procedures. Geneva

Lin PJ, Schueler BA, Balter S, et al. Accuracy and calibration of integrated radiation output indicators in diagnostic radiology: A report of the AAPM Imaging Physics Committee Task Group 190. Med Phys. 2015;42(12):6815–29. https://doi.org/10.1118/1.4934831.

Article  PubMed  Google Scholar 

Jones AK, Pasciak AS. Calculating the peak skin dose resulting from fluoroscopically guided interventions Part I: Methods (12: 231). J Appl Clin Med Phys. 2011;15:402.

Article  Google Scholar 

Malchair F, Dabin J, Deleu M, et al. Review of skin dose calculation software in interventional cardiology. Phys Med. 2020;80:75–83. https://doi.org/10.1016/j.ejmp.2020.09.023.

Article  PubMed  Google Scholar 

Didier R, Bourhis D, Oueslati C, et al. In vivo validation of Dosemap software use in interventional cardiology with dosimetrics indicators and peak skin dose evaluation. Catheter Cardiovasc Interv. 2019;94(2):216–22. https://doi.org/10.1002/ccd.28097.

Article  PubMed  Google Scholar 

Magnier F, Poulin M, Van Ngoc TC, et al. Comparison of patient skin dose evaluated using radiochromic film and dose calculation software. Cardiovasc Intervent Radiol. 2018;41(5):762–71. https://doi.org/10.1007/s00270-018-1888-1.

Article  PubMed  Google Scholar 

Dabin J, Blideanu V, Bjelac OC, et al. Accuracy of skin dose mapping in interventional cardiology: Comparison of 10 software products following a common protocol. Phys Med. 2021;82:279–94. https://doi.org/10.1016/j.ejmp.2021.02.016.

Article  PubMed  Google Scholar 

R Core Team. R: A language and environment for statistical computing. Vienna, Austria; 2022. http://www.R-project.org/. Accessed 22 March 2024.

Kato H, Fujii S, Yoshimi Y. Development of computer code, SDEC, for evaluation of patient surface dose from diagnostic X-ray. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2009;65(10):1400–6. https://doi.org/10.6009/jjrt.65.1400.

Article  PubMed  Google Scholar 

Akaike H. Information theory and an extension of the maximum likelihood principle Selected papers of Hirotugu Akaike. NY: Springer; 1998. p. 199–213.

Book  Google Scholar 

Morota K, Moritake T, Nagamoto K, et al. Optimization of the maximum skin dose measurement technique using digital imaging and communication in medicine-radiation dose structured report data for patients undergoing cerebral angiography. Diagnostics (Basel). 2020;11(1):14. https://doi.org/10.3390/diagnostics11010014.

Article  PubMed  Google Scholar 

Kato M, Chida K, Moritake T, et al. Multicenter study on evaluation of the entrance skin dose by a direct measurement method in cardiac interventional procedures. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72(1):73–80. https://doi.org/10.6009/jjrt.2016_JSRT_72.1.73.

Article  CAS  PubMed  Google Scholar 

Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Z, Castelló A. Principal components analysis in clinical studies. Ann Transl Med. 2017;5(17):351. https://doi.org/10.21037/atm.2017.07.12.

Article  PubMed  PubMed Central  Google Scholar 

Anne-Leen D, Machaba S, Alex M, et al. Principal component analysis of texture features derived from FDG PET images of melanoma lesions. EJNMMI Physics. 2022;9(1):64. https://doi.org/10.1186/s40658-022-00491-x.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif