Koenig TR, Wolff D, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures:part 1, characteristics of radiation injury. AJR Am J Roentgenol. 2001;177(1):3–11. https://doi.org/10.2214/ajr.177.1.1770003.
Article CAS PubMed Google Scholar
Koenig TR, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures:part 2, review of 73 cases and recommendations for minimizing dose delivered to patient. AJR Am J Roentgenol. 2001;177(1):13–20. https://doi.org/10.2214/ajr.177.1.1770013.
Article CAS PubMed Google Scholar
Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ. Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair. Radiology. 2010;254(2):326–41. https://doi.org/10.1148/radiol.2542082312.
Kato M, Chida K, Sato T, et al. The necessity of follow-up for radiation skin injuries in patients after percutaneous coronary interventions: radiation skin injuries will often be overlooked clinically. Acta Radiol. 2012;53(9):1040–4. https://doi.org/10.1258/ar.2012.120192.
Magrassi L, Bongetta D, D’Ercole L, et al. Neuroembolization may expose patients to radiation doses previously linked to tumor induction. Acta Neurochir. 2012;154(1):33–41. https://doi.org/10.1007/s00701-011-1209-9.
Corrigall RS, Martin CJ, Scott I. Observations of tissue reactions following neuroradiology interventional procedures. J Radiol Prot. 2020;40(1):N9–15. https://doi.org/10.1088/1361-6498/ab5bf4.
Article CAS PubMed Google Scholar
Imanishi Y, Fukui A, Niimi H, et al. Radiation-induced temporary hair loss as a radiation damage only occurring in patients who had the combination of MDCT and DSA. Eur Radiol. 2005;15(1):41–6. https://doi.org/10.1007/s00330-004-2459-1.
Chida K, Kato M, Kagaya Y, et al. Radiation dose and radiation protection for patients and physicians during interventional procedure. J Radiat Res. 2010;51(2):97–105. https://doi.org/10.1269/jrr.09112.
Andersson J, Bednarek DR, Bolch W, et al. Estimation of patient skin dose in fluoroscopy: summary of a joint report by AAPM TG357 and EFOMP. Med Phys. 2021;48(7):e671–96. https://doi.org/10.1002/mp.14910.
Bor D, Olgar T, Toklu T, et al. Patient doses and dosimetric evaluations in interventional cardiology. Phys Med. 2009;25(1):31–42. https://doi.org/10.1016/j.ejmp.2008.03.002.
Farah J, Trianni A, Ciraj-Bjelac O, et al. Characterization of XR-RV3 GafChromic® films in standard laboratory and in clinical conditions and means to evaluate uncertainties and reduce errors. Med Phys. 2015;42(7):4211–26. https://doi.org/10.1118/1.4922132.
Article CAS PubMed Google Scholar
Geryes BH, Hadid-Beurrier L, Waryn MJ, Jean-Pierre A, Farah J. Benchmarking the DACS-integrated radiation dose monitor® skin dose mapping software using XR-RV3 Gafchromic® films. Med Phys. 2018;45(10):4683–92. https://doi.org/10.1002/mp.13125.
Moritake T, Matsumaru Y, Takigawa T, et al. Dose measurement on both patients and operators during neurointerventional procedures using photoluminescence glass dosimeters. AJNR Am J Neuroradiol. 2008;29(10):1910–7. https://doi.org/10.3174/ajnr.A1235.
Article CAS PubMed PubMed Central Google Scholar
Moritake T, Hayakawa M, Matsumaru Y, et al. Precise mapping system of entrance skin dose during endovascular embolization for cerebral aneurysm. Radiat Meas. 2011;46(12):2103–6. https://doi.org/10.1016/j.radmeas.2011.08.008.
Schonbacher H, Furstner M, Vincke H. High-level dosimetric methods. Radiat Prot Dosimetry. 2009;137(1–2):83–93. https://doi.org/10.1093/rpd/ncp195.
Article CAS PubMed Google Scholar
Yamamoto T, Yanagida-Miyamoto Y, Iida T, Nanto H. Current status and future prospect of RPL glass dosimeter. Radiat Meas. 2020;136: 106363. https://doi.org/10.1016/j.radmeas.2020.106363.
Ferrari M, Aguiar YQ, Hasan A, et al. Characterization of radiophotoluminescence dosimeters under X-ray irradiation at high doses. IEEE Trans on Nucl Sci. 2024. https://doi.org/10.1109/TNS.2024.3365272.
International Electrotechnical Commission. 2010. IEC 60601–2–43, Medical electrical equipment Part 2–43: Particular requirements for the safety of X-ray equipment for interventional procedures. Geneva
Lin PJ, Schueler BA, Balter S, et al. Accuracy and calibration of integrated radiation output indicators in diagnostic radiology: A report of the AAPM Imaging Physics Committee Task Group 190. Med Phys. 2015;42(12):6815–29. https://doi.org/10.1118/1.4934831.
Jones AK, Pasciak AS. Calculating the peak skin dose resulting from fluoroscopically guided interventions Part I: Methods (12: 231). J Appl Clin Med Phys. 2011;15:402.
Malchair F, Dabin J, Deleu M, et al. Review of skin dose calculation software in interventional cardiology. Phys Med. 2020;80:75–83. https://doi.org/10.1016/j.ejmp.2020.09.023.
Didier R, Bourhis D, Oueslati C, et al. In vivo validation of Dosemap software use in interventional cardiology with dosimetrics indicators and peak skin dose evaluation. Catheter Cardiovasc Interv. 2019;94(2):216–22. https://doi.org/10.1002/ccd.28097.
Magnier F, Poulin M, Van Ngoc TC, et al. Comparison of patient skin dose evaluated using radiochromic film and dose calculation software. Cardiovasc Intervent Radiol. 2018;41(5):762–71. https://doi.org/10.1007/s00270-018-1888-1.
Dabin J, Blideanu V, Bjelac OC, et al. Accuracy of skin dose mapping in interventional cardiology: Comparison of 10 software products following a common protocol. Phys Med. 2021;82:279–94. https://doi.org/10.1016/j.ejmp.2021.02.016.
R Core Team. R: A language and environment for statistical computing. Vienna, Austria; 2022. http://www.R-project.org/. Accessed 22 March 2024.
Kato H, Fujii S, Yoshimi Y. Development of computer code, SDEC, for evaluation of patient surface dose from diagnostic X-ray. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2009;65(10):1400–6. https://doi.org/10.6009/jjrt.65.1400.
Akaike H. Information theory and an extension of the maximum likelihood principle Selected papers of Hirotugu Akaike. NY: Springer; 1998. p. 199–213.
Morota K, Moritake T, Nagamoto K, et al. Optimization of the maximum skin dose measurement technique using digital imaging and communication in medicine-radiation dose structured report data for patients undergoing cerebral angiography. Diagnostics (Basel). 2020;11(1):14. https://doi.org/10.3390/diagnostics11010014.
Kato M, Chida K, Moritake T, et al. Multicenter study on evaluation of the entrance skin dose by a direct measurement method in cardiac interventional procedures. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72(1):73–80. https://doi.org/10.6009/jjrt.2016_JSRT_72.1.73.
Article CAS PubMed Google Scholar
Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202.
Article PubMed PubMed Central Google Scholar
Zhang Z, Castelló A. Principal components analysis in clinical studies. Ann Transl Med. 2017;5(17):351. https://doi.org/10.21037/atm.2017.07.12.
Article PubMed PubMed Central Google Scholar
Anne-Leen D, Machaba S, Alex M, et al. Principal component analysis of texture features derived from FDG PET images of melanoma lesions. EJNMMI Physics. 2022;9(1):64. https://doi.org/10.1186/s40658-022-00491-x.
Comments (0)