Kinney, H. C. & Volpe, J. J. in Volpe’s Neurology of the Newborn (Sixth Edition) (Volpe, J. J. et al. eds) 389-404 (Elsevier, 2018).
Neil, J. J. & Volpe, J. J. in Volpe’s Neurology of the Newborn (Sixth Edition) (Volpe, J. J. et al. eds) 425-457.e411 (Elsevier, 2018).
van Tilborg, E. et al. Origin and dynamics of Oligodendrocytes in the developing brain: implications for perinatal white matter injury. Glia 66, 221–238 (2018).
Judaš, M., Sedmak, G. & Kostović, I. The significance of the subplate for evolution and developmental plasticity of the human brain. Front. Hum. Neurosci. 7, 423 (2013).
Article PubMed PubMed Central Google Scholar
Galinsky, R. et al. Complex interactions between Hypoxia-Ischemia and Inflammation in preterm brain injury. Dev. Med. Child Neurol. 60, 126–133 (2018).
Nair, S. et al. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: role of mitochondria, inflammation, and reactive oxygen species. J. Neurochem. 158, 59–73 (2021).
Article PubMed PubMed Central Google Scholar
Parr, A. M., Tator, C. H. & Keating, A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant. 40, 609–619 (2007).
Song, N., Scholtemeijer, M. & Shah, K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharm. Sci. 41, 653–664 (2020).
Wang, L. W., Hsiung, C. W., Chang, C. P., Lin, M. T. & Chen, S. J. Neuroserpin normalization by mesenchymal stem cell therapy after encephalopathy of prematurity in neonatal rats. Pediatr. Res. (2024) in press.
Dean, J. M. et al. What brakes the preterm brain? An arresting story. Pediatr. Res. 75, 227–233 (2014).
McDonald, C. A. et al. Intranasal delivery of mesenchymal stromal cells protects against neonatal hypoxic–ischemic brain injury. Int J. Mol. Sci. 20, 2449 (2019).
Article PubMed PubMed Central Google Scholar
Oppliger, B. et al. Intranasal delivery of umbilical cord-derived mesenchymal stem cells preserves myelination in perinatal brain damage. Stem Cells Dev. 25, 1234–1242 (2016).
Donega, V. et al. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Exp. Neurol. 261, 53–64 (2014).
Donega, V. et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS One 8, e51253 (2013).
Article PubMed PubMed Central Google Scholar
D’Acunto, E. et al. Neuroserpin: Structure, function, physiology and pathology. Cell. Mol. Life Sci. 78, 6409–6430 (2021).
Article PubMed PubMed Central Google Scholar
Godinez, A. et al. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol. Life Sci. 79, 172 (2022).
Article PubMed PubMed Central Google Scholar
Cosgrove, B. D. et al. N-Cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. Nat. Mater. 15, 1297–1306 (2016).
Article PubMed PubMed Central Google Scholar
Ma, J., Yu, D., Tong, Y. & Mao, M. Effect of Neuroserpin in a neonatal Hypoxic-Ischemic Injury Model ex vivo. Biol. Res. 45, 357–362 (2012).
Kilicdag, H., Akillioglu, K., Kilic Bagır, E., Kose, S. & Erdogan, S. Neuroserpin as an adjuvant therapy for hypothermia on brain injury in neonatal hypoxic-ischemic rats. Am. J. Perinatol. 41, 1538–1543 (2023).
Yasuhara, T. et al. Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J. Cereb. Blood Flow. Metab. 28, 1804–1810 (2008).
Hass, R., Kasper, C., Böhm, S. & Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal 9, 12 (2011).
Comments (0)