Role of phosphorylated Y1252, Y1336 and Y1472 on NR2B subunits in hypoxia tolerance of neuronal cell in vitro

Baltan S (2016) Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology 110(Pt B):626–632. https://doi.org/10.1016/j.neuropharm.2015.09.015

Article  CAS  PubMed  Google Scholar 

Bickler PE, Fahlman CS, Taylor DM (2003) Oxygen sensitivity of NMDA receptors: relationship to NR2 subunit composition and hypoxia tolerance of neonatal neurons. Neuroscience 118(1):25–35. https://doi.org/10.1016/s0306-4522(02)00763-7

Article  CAS  PubMed  Google Scholar 

Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53(3):362–368. https://doi.org/10.1016/j.neuropharm.2007.05.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng Z, Ou H, Ren F, Guan Y, Huan Y, Cai H, Sun B (2020) LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol Res 53(1):38. https://doi.org/10.1186/s40659-020-00304-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du F, Tang T, Li Q, Liu J (2022) Fyn signaling in ischemia-reperfusion injury: potential and therapeutic implications. Mediators Inflamm 2022:9112127. https://doi.org/10.1155/2022/9112127

Article  CAS  PubMed  PubMed Central  Google Scholar 

Epimakhova EV, Smirnova LP, Kazantseva DV, Kamaeva DA, Ivanova SA (2023) Different directions of effects of polyclonal IgG antibodies from patients with Schizophrenia and healthy individuals on cell death in vitro: a pilot study. Curr Issues Mol Biol 45(4):3168–3179

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goebel-Goody SM, Davies KD, Alvestad Linger RM, Freund RK, Browning MD (2009) Phospho-regulation of synaptic and extrasynaptic N-methyl-d-aspartate receptors in adult hippocampal slices. Neuroscience 158(4):1446–1459. https://doi.org/10.1016/j.neuroscience.2008.11.006

Article  CAS  PubMed  Google Scholar 

Guo B, Song H, Fan J, Wang B, Chen L, Hu Q, Yin Y (2023a) The NR2B-targeted intervention alleviates the neuronal injuries at the sub-acute stage of cerebral ischemia: an exploration of stage-dependent strategy against ischemic insults. Exp Brain Res 241(11–12):2735–2750. https://doi.org/10.1007/s00221-023-06717-3

Article  CAS  PubMed  Google Scholar 

Guo M, Cao Q, Xia S, Cao X, Chen J, Qian Y, Bao X, Xu Y (2023b) A newly-synthesized compound CP-07 alleviates microglia-mediated neuroinflammation and ischemic brain injury via inhibiting STAT3 phosphorylation. J Transl Int Med 11(2):156–168. https://doi.org/10.2478/jtim-2023-0090

Article  PubMed  PubMed Central  Google Scholar 

Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell’Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF (2021) Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev 73(4):298–487. https://doi.org/10.1124/pharmrev.120.000131

Article  PubMed  PubMed Central  Google Scholar 

Jiang X, Knox R, Pathipati P, Ferriero D (2011) Developmental localization of NMDA receptors, Src and MAP kinases in mouse brain. Neurosci Lett 503(3):215–219. https://doi.org/10.1016/j.neulet.2011.08.039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaur C, Saini S, Pal I, Kumar P, Chandra Sati H, Jacob TG, Bhardwaj DN, Roy TS (2020) Age-related changes in the number of cresyl-violet-stained, parvalbumin and NMDAR 2B expressing neurons in the human spiral ganglion. Hear Res 388:107883. https://doi.org/10.1016/j.heares.2020.107883

Article  PubMed  Google Scholar 

Knox R, Zhao C, Miguel-Perez D, Wang S, Yuan J, Ferriero D, Jiang X (2013) Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia-ischemia in mice with neuronal Fyn overexpression. Neurobiol Dis 51:113–119. https://doi.org/10.1016/j.nbd.2012.10.024

Article  CAS  PubMed  Google Scholar 

Knox R, Brennan-Minnella AM, Lu F, Yang D, Nakazawa T, Yamamoto T, Swanson RA, Ferriero DM, Jiang X (2014) NR2B phosphorylation at tyrosine 1472 contributes to brain injury in a rodent model of neonatal hypoxia-ischemia. Stroke 45(10):3040–3047. https://doi.org/10.1161/STROKEAHA.114.006170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai TW, Shyu WC, Wang YT (2011) Stroke intervention pathways: NMDA receptors and beyond. Trends Mol Med 17(5):266–275. https://doi.org/10.1016/j.molmed.2010.12.008

Article  CAS  PubMed  Google Scholar 

Lee SS, Kim CJ, Shin MS, Lim BV (2020) Treadmill exercise ameliorates memory impairment through ERK-Akt-CREB-BDNF signaling pathway in cerebral ischemia gerbils. J Exerc Rehabil. 16(1):49–57. https://doi.org/10.12965/jer.2040014.007

Article  PubMed  PubMed Central  Google Scholar 

Liang X, Shi L, Wang M, Zhang L, Gong Z, Luo S, Wang X, Zhang Q, Zhang X (2023) Folic acid ameliorates synaptic impairment following cerebral ischemia/reperfusion injury via inhibiting excessive activation of NMDA receptors. J Nutr Biochem 112:109209. https://doi.org/10.1016/j.jnutbio.2022.109209

Article  CAS  PubMed  Google Scholar 

Lu F, Shao G, Wang Y, Guan S, Burlingame AL, Liu X, Liang X, Knox R, Ferriero DM, Jiang X (2018) Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol 299(Pt A):65–74. https://doi.org/10.1016/j.expneurol.2017.10.005

Article  CAS  PubMed  Google Scholar 

Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, Yamamoto T (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 276(1):693–699. https://doi.org/10.1074/jbc.M008085200

Article  CAS  PubMed  Google Scholar 

Nakazawa T, Tezuka T, Yamamoto T (2002) Regulation of NMDA receptor function by Fyn-mediated tyrosine phosphorylation. Nihon Shinkei Seishin Yakurigaku Zasshi 22(5):165–167

CAS  PubMed  Google Scholar 

Nakazawa T, Komai S, Watabe AM, Kiyama Y, Fukaya M, Arima-Yoshida F, Horai R, Sudo K, Ebine K, Delawary M, Goto J, Umemori H, Tezuka T, Iwakura Y, Watanabe M, Yamamoto T, Manabe T (2006) NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity. EMBO J 25(12):2867–2877. https://doi.org/10.1038/sj.emboj.7601156

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni L (2020) The structure and function of ionotropic receptors in Drosophila. Front Mol Neurosci 13:638839. https://doi.org/10.3389/fnmol.2020.638839

Article  CAS  PubMed  Google Scholar 

Park JH, Jeong E, Lin J, Ko R, Kim JH, Yi S, Choi Y, Kang IC, Lee D, Lee SY (2019) RACK1 interaction with c-Src is essential for osteoclast function. Exp Mol Med 51(7):1–9

PubMed  PubMed Central  Google Scholar 

Pascoli V, Besnard A, Herve D, Pages C, Heck N, Girault JA, Caboche J, Vanhoutte P (2011) Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biol Psychiatry 69(3):218–227. https://doi.org/10.1016/j.biopsych.2010.08.031

Article  CAS  PubMed  Google Scholar 

Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 7(1):215. https://doi.org/10.1038/s41392-022-01064-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu H, Qian T, Wu T, Gao T, Xing Q, Wang L (2021) Src family kinases inhibition ameliorates hypoxic-ischemic brain injury in immature rats. Front Cell Neurosci 15:746130

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif