Baltan S (2016) Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology 110(Pt B):626–632. https://doi.org/10.1016/j.neuropharm.2015.09.015
Article CAS PubMed Google Scholar
Bickler PE, Fahlman CS, Taylor DM (2003) Oxygen sensitivity of NMDA receptors: relationship to NR2 subunit composition and hypoxia tolerance of neonatal neurons. Neuroscience 118(1):25–35. https://doi.org/10.1016/s0306-4522(02)00763-7
Article CAS PubMed Google Scholar
Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53(3):362–368. https://doi.org/10.1016/j.neuropharm.2007.05.018
Article CAS PubMed PubMed Central Google Scholar
Deng Z, Ou H, Ren F, Guan Y, Huan Y, Cai H, Sun B (2020) LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol Res 53(1):38. https://doi.org/10.1186/s40659-020-00304-4
Article CAS PubMed PubMed Central Google Scholar
Du F, Tang T, Li Q, Liu J (2022) Fyn signaling in ischemia-reperfusion injury: potential and therapeutic implications. Mediators Inflamm 2022:9112127. https://doi.org/10.1155/2022/9112127
Article CAS PubMed PubMed Central Google Scholar
Epimakhova EV, Smirnova LP, Kazantseva DV, Kamaeva DA, Ivanova SA (2023) Different directions of effects of polyclonal IgG antibodies from patients with Schizophrenia and healthy individuals on cell death in vitro: a pilot study. Curr Issues Mol Biol 45(4):3168–3179
Article CAS PubMed PubMed Central Google Scholar
Goebel-Goody SM, Davies KD, Alvestad Linger RM, Freund RK, Browning MD (2009) Phospho-regulation of synaptic and extrasynaptic N-methyl-d-aspartate receptors in adult hippocampal slices. Neuroscience 158(4):1446–1459. https://doi.org/10.1016/j.neuroscience.2008.11.006
Article CAS PubMed Google Scholar
Guo B, Song H, Fan J, Wang B, Chen L, Hu Q, Yin Y (2023a) The NR2B-targeted intervention alleviates the neuronal injuries at the sub-acute stage of cerebral ischemia: an exploration of stage-dependent strategy against ischemic insults. Exp Brain Res 241(11–12):2735–2750. https://doi.org/10.1007/s00221-023-06717-3
Article CAS PubMed Google Scholar
Guo M, Cao Q, Xia S, Cao X, Chen J, Qian Y, Bao X, Xu Y (2023b) A newly-synthesized compound CP-07 alleviates microglia-mediated neuroinflammation and ischemic brain injury via inhibiting STAT3 phosphorylation. J Transl Int Med 11(2):156–168. https://doi.org/10.2478/jtim-2023-0090
Article PubMed PubMed Central Google Scholar
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell’Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF (2021) Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev 73(4):298–487. https://doi.org/10.1124/pharmrev.120.000131
Article PubMed PubMed Central Google Scholar
Jiang X, Knox R, Pathipati P, Ferriero D (2011) Developmental localization of NMDA receptors, Src and MAP kinases in mouse brain. Neurosci Lett 503(3):215–219. https://doi.org/10.1016/j.neulet.2011.08.039
Article CAS PubMed PubMed Central Google Scholar
Kaur C, Saini S, Pal I, Kumar P, Chandra Sati H, Jacob TG, Bhardwaj DN, Roy TS (2020) Age-related changes in the number of cresyl-violet-stained, parvalbumin and NMDAR 2B expressing neurons in the human spiral ganglion. Hear Res 388:107883. https://doi.org/10.1016/j.heares.2020.107883
Knox R, Zhao C, Miguel-Perez D, Wang S, Yuan J, Ferriero D, Jiang X (2013) Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia-ischemia in mice with neuronal Fyn overexpression. Neurobiol Dis 51:113–119. https://doi.org/10.1016/j.nbd.2012.10.024
Article CAS PubMed Google Scholar
Knox R, Brennan-Minnella AM, Lu F, Yang D, Nakazawa T, Yamamoto T, Swanson RA, Ferriero DM, Jiang X (2014) NR2B phosphorylation at tyrosine 1472 contributes to brain injury in a rodent model of neonatal hypoxia-ischemia. Stroke 45(10):3040–3047. https://doi.org/10.1161/STROKEAHA.114.006170
Article CAS PubMed PubMed Central Google Scholar
Lai TW, Shyu WC, Wang YT (2011) Stroke intervention pathways: NMDA receptors and beyond. Trends Mol Med 17(5):266–275. https://doi.org/10.1016/j.molmed.2010.12.008
Article CAS PubMed Google Scholar
Lee SS, Kim CJ, Shin MS, Lim BV (2020) Treadmill exercise ameliorates memory impairment through ERK-Akt-CREB-BDNF signaling pathway in cerebral ischemia gerbils. J Exerc Rehabil. 16(1):49–57. https://doi.org/10.12965/jer.2040014.007
Article PubMed PubMed Central Google Scholar
Liang X, Shi L, Wang M, Zhang L, Gong Z, Luo S, Wang X, Zhang Q, Zhang X (2023) Folic acid ameliorates synaptic impairment following cerebral ischemia/reperfusion injury via inhibiting excessive activation of NMDA receptors. J Nutr Biochem 112:109209. https://doi.org/10.1016/j.jnutbio.2022.109209
Article CAS PubMed Google Scholar
Lu F, Shao G, Wang Y, Guan S, Burlingame AL, Liu X, Liang X, Knox R, Ferriero DM, Jiang X (2018) Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol 299(Pt A):65–74. https://doi.org/10.1016/j.expneurol.2017.10.005
Article CAS PubMed Google Scholar
Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, Yamamoto T (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 276(1):693–699. https://doi.org/10.1074/jbc.M008085200
Article CAS PubMed Google Scholar
Nakazawa T, Tezuka T, Yamamoto T (2002) Regulation of NMDA receptor function by Fyn-mediated tyrosine phosphorylation. Nihon Shinkei Seishin Yakurigaku Zasshi 22(5):165–167
Nakazawa T, Komai S, Watabe AM, Kiyama Y, Fukaya M, Arima-Yoshida F, Horai R, Sudo K, Ebine K, Delawary M, Goto J, Umemori H, Tezuka T, Iwakura Y, Watanabe M, Yamamoto T, Manabe T (2006) NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity. EMBO J 25(12):2867–2877. https://doi.org/10.1038/sj.emboj.7601156
Article CAS PubMed PubMed Central Google Scholar
Ni L (2020) The structure and function of ionotropic receptors in Drosophila. Front Mol Neurosci 13:638839. https://doi.org/10.3389/fnmol.2020.638839
Article CAS PubMed Google Scholar
Park JH, Jeong E, Lin J, Ko R, Kim JH, Yi S, Choi Y, Kang IC, Lee D, Lee SY (2019) RACK1 interaction with c-Src is essential for osteoclast function. Exp Mol Med 51(7):1–9
PubMed PubMed Central Google Scholar
Pascoli V, Besnard A, Herve D, Pages C, Heck N, Girault JA, Caboche J, Vanhoutte P (2011) Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biol Psychiatry 69(3):218–227. https://doi.org/10.1016/j.biopsych.2010.08.031
Article CAS PubMed Google Scholar
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 7(1):215. https://doi.org/10.1038/s41392-022-01064-1
Article CAS PubMed PubMed Central Google Scholar
Qiu H, Qian T, Wu T, Gao T, Xing Q, Wang L (2021) Src family kinases inhibition ameliorates hypoxic-ischemic brain injury in immature rats. Front Cell Neurosci 15:746130
Comments (0)