Transiently worse postural effects after vestibulo-ocular reflex gain-down adaptation in healthy adults

Agrawal Y, Van De Berg R, Wuyts F et al (2019) Presbyvestibulopathy: diagnostic criteria Consensus document of the classification committee of the Bárány Society. J Vestib Res 29:161–170. https://doi.org/10.3233/VES-190672

Article  PubMed  PubMed Central  Google Scholar 

Allison LK, Kiemel T, Jeka JJ (2018) Sensory-challenge balance exercises improve multisensory reweighting in fall-prone older adults. J Neurol Phys Ther 42:84–93. https://doi.org/10.1097/NPT.0000000000000214

Article  PubMed  Google Scholar 

Allum JHJ (2012) Recovery of vestibular ocular reflex function and balance control after a unilateral peripheral vestibular deficit. 3:1–7. https://doi.org/10.3389/fneur.2012.00083

Allum JHJ, Honegger F (2020) Correlations between multi-plane vHIT responses and Balance Control after Onset of an Acute Unilateral Peripheral vestibular deficit. Otology Neurotology 41:e952–e960. https://doi.org/10.1097/MAO.0000000000002482

Article  PubMed  Google Scholar 

Allum JHJ, Scheltinga A, Honegger F (2017) The effect of peripheral vestibular recovery on improvements in Vestibulo-ocular reflexes and Balance Control after Acute Unilateral Peripheral vestibular loss. Otology Neurotology 38:e531–e538. https://doi.org/10.1097/MAO.0000000000001477

Article  PubMed  Google Scholar 

Anson E, Bigelow RT, Swenor B et al (2017) Loss of peripheral sensory function explains much of the increase in postural sway in healthy older adults. Front Aging Neurosci 9. https://doi.org/10.3389/fnagi.2017.00202

Anson E, Bigelow RT, Studenski S et al (2019) Failure on the foam eyes closed test of standing Balance Associated with reduced semicircular canal function in healthy older adults. Ear Hear 40:340–344. https://doi.org/10.1097/AUD.0000000000000619

Article  PubMed  PubMed Central  Google Scholar 

Anson ER (2024) BalanceSway_Repository_Dataset.xlsx. University of Rochester. Dataset. Figshare, ur.d.25601328.v1. https://rochester.figshare.com/articles/dataset/BalanceSway_Repository_Dataset_xlsx/25601328.

Arntz AI, van der Putte DAM, Jonker ZD et al (2019) The vestibular drive for Balance Control is dependent on multiple sensory cues of gravity. Front Physiol 10:476. https://doi.org/10.3389/fphys.2019.00476

Article  PubMed  PubMed Central  Google Scholar 

Assländer L, Peterka RJ (2016) Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues. J Neurophysiol 116:272–285. https://doi.org/10.1152/jn.01145.2015

Article  PubMed  PubMed Central  Google Scholar 

Bartl K, Lehnen N, Kohlbecher S, Schneider E (2009) Head Impulse Testing using video-oculography. Ann N Y Acad Sci 1164:331–333

Article  PubMed  Google Scholar 

Beylergil SB, Karmali F, Wang W et al (2019) Vestibular roll tilt thresholds partially mediate age-related effects on balance. Progress in Brain Research. Elsevier, pp 249–267

Brooks JX, Carriot J, Cullen KE (2015) Learning to expect the unexpected: Rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 18. https://doi.org/10.1038/nn.4077

Carriot J, Brooks JX, Cullen KE (2013) Multimodal integration of self-motion cues in the vestibular system: active versus passive translations. J Neurosci 33:19555–19566. https://doi.org/10.1523/JNEUROSCI.3051-13.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carriot J, Jamali M, Chacron MJ, Cullen KE (2014) Statistics of the vestibular input experienced during natural self-motion: implications for neural processing. J Neurosci 34:8347–8357. https://doi.org/10.1523/JNEUROSCI.0692-14.2014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carriot J, Jamali M, Brooks JX, Cullen KE (2015) Integration of Canal and Otolith inputs by central vestibular neurons is Subadditive for both active and Passive Self-Motion: implication for perception. J Neurosci 35:3555–3565. https://doi.org/10.1523/JNEUROSCI.3540-14.2015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cathers I, Day BL, Fitzpatrick RC (2005) Otolith and canal reflexes in human standing. J Physiol 563:229–234. https://doi.org/10.1113/jphysiol.2004.079525

Article  CAS  PubMed  Google Scholar 

Cohen H, Blatchly CA, Gombash LL (1993) A study of the clinical test of sensory interaction and balance. Phys Ther 73:346–351

Article  CAS  PubMed  Google Scholar 

Cohen HS, Mulavara AP, Stitz J et al (2019) Screening for vestibular disorders using the modified clinical test of sensory Interaction and Balance and Tandem walking with eyes closed. Otology Neurotology 40:658–665. https://doi.org/10.1097/MAO.0000000000002173

Article  PubMed  PubMed Central  Google Scholar 

Cullen KE (2019) Vestibular processing during natural self-motion: implications for perception and action. Nat Rev Neurosci 20:346–363

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cullen KE (2023) Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 46:986–1002. https://doi.org/10.1016/J.TINS.2023.08.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cullen K, Roy J (2004) Signal processing in the vestibular system during active versus passive head movements. J Neurophysiol 91:1919–1933. https://doi.org/10.1152/jn.00988.2003

Article  PubMed  Google Scholar 

Cullen KE, Zobeiri OA (2021) Proprioception and the predictive sensing of active self-motion. Curr Opin Physiol 20:29–38. https://doi.org/10.1016/j.cophys.2020.12.001

Article  PubMed  PubMed Central  Google Scholar 

Dale A, Cullen KE (2019) The ventral posterior lateral thalamus preferentially encodes externally Applied Versus active Movement: implications for self-motion perception. https://doi.org/10.1093/cercor/bhx325. Cerebral cortex 29:

Das VE, Dell’osso LF, Leigh RJ (1999) Enhancement of the vestibulo-ocular reflex by prior eye movements. J Neurophysiol 81:2884–2892. https://doi.org/10.1152/jn.1999.81.6.2884

Article  CAS  PubMed  Google Scholar 

Diaz-Artiles A, Karmali F (2021) Vestibular Precision at the level of Perception, Eye Movements, posture, and neurons. Neuroscience 468:282–320. https://doi.org/10.1016/J.NEUROSCIENCE.2021.05.028

Article  CAS  PubMed  Google Scholar 

Faralli M, Ori M, Ricci G et al (2022) Disruption of self-motion perception without vestibular reflex alteration in ménière’s disease. J Vestib Res 32:193–203. https://doi.org/10.3233/VES-201520

Article  PubMed  Google Scholar 

Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J Appl Physiol 96:2301–2316. https://doi.org/10.1152/japplphysiol.00008.2004

Article  PubMed  Google Scholar 

Fox A, Koceja D (2017) Static otolithic drive alters presynaptic inhibition in soleus motor pool. J Electromyogr Kinesiol 32:37–43. https://doi.org/10.1016/j.jelekin.2016.12.002

Article  PubMed  Google Scholar 

Fujimoto C, Kamogashira T, Kinoshita M et al (2014) Power Spectral Analysis of Postural Sway during Foam Posturography in patients with peripheral vestibular dysfunction. Otology Neurotology 35:e317–e323. https://doi.org/10.1097/MAO.0000000000000554

Article  PubMed  Google Scholar 

Gabriel GA, Harris LR, Gnanasegaram JJ et al (2022) Age-related changes to vestibular heave and pitch perception and associations with postural control. Scientific Reports 2022 12:1 12:1–16. https://doi.org/10.1038/s41598-022-09807-4

Gimmon Y, Migliaccio AA, Todd CJ et al (2018) Simultaneous and opposing horizontal VOR adaptation in humans suggests functionally independent neural circuits. J Neurophysiol 120:1496–1504. https://doi.org/10.1152/jn.00134.2018

Article  PubMed  Google Scholar 

Gimmon Y, Migliaccio AA, Kim KJ, Schubert MC (2019) VOR adaptation training and retention in a patient with profound bilateral vestibular hypofunction. Laryngoscope 129:2568–2573. https://doi.org/10.1002/LARY.27838

Article  PubMed  Google Scholar 

Giray M, Kirazli Y, Karapolat H et al (2009) Short-term effects of vestibular Rehabilitation in patients with chronic unilateral vestibular dysfunction: a randomized controlled study. Arch Phys Med Rehabil 90:1325–1331. https://doi.org/10.1016/j.apmr.2009.01.032

Article  PubMed  Google Scholar 

Grillner S, Hongo T (1972) Vestibulospinal effects on Motoneurones and Interneurones in the Lumbosacral Cord. Prog Brain Res 37:243–262. https://doi.org/10.1016/S0079-6123(08)63906-0

Article 

Comments (0)

No login
gif