A comparative analysis of face and object perception in 2D laboratory and virtual reality settings: insights from induced oscillatory responses

Aktürk T, İşoğlu-Alkaç Ü, Hanoğlu L, Güntekin B (2020) Age related differences in the recognition of facial expression: evidence from EEG event-related brain oscillations. Int J Psychophysiol 147:244–256. https://doi.org/10.1016/j.ijpsycho.2019.11.013

Article  PubMed  Google Scholar 

Baker DH, Vilidaite G, Lygo FA, Smith AK, Flack TR, Gouws AD, Andrews TJ (2020) Power contours: optimising sample size and Precision in experimental psychology and human neuroscience. Psychol Methods 26(3):295–314. https://doi.org/10.1037/met0000337

Article  PubMed  PubMed Central  Google Scholar 

Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2000) Brain oscillations in perception and memory. Int J Psychophysiol 35(2–3):95–124. https://doi.org/10.1016/S0167-8760(99)00047-1

Article  PubMed  Google Scholar 

Berchicci M, Spinelli D, Di Russo F (2016) New insights into old waves. Matching stimulus- and response-locked ERPs on the same time-window. Biol Psychol 117:202–215. https://doi.org/10.1016/j.biopsycho.2016.04.007

Article  CAS  PubMed  Google Scholar 

Bertrand O, Pantev C (1994) Stimulus frequency dependence of the transient oscillatory auditory evoked responses (40 hz) studied by electric and magnetic recordings in human. In: Pantev C, Elbert T, & Lütkenhöner B (eds) Oscillatory event-related brain dynamics. Oscillatory event-related brain dynamics. Springer, Boston, MA, pp 231–242

Blascovich J, Loomis J, Beall AC, Swinth KR, Crystal L, Inquiry SP, Blascovich J, Loomis J, Beall AC, Swinth KR, Hoyt CL, Bailenson JN (2002) Immersive virtual Environment Technology as a Methodological Tool for Social psychology. Psychol Inq 13(2):103–124. https://doi.org/10.1207/S15327965PLI1302_01

Article  Google Scholar 

Boehm SG, Dering B, Thierry G (2011) Category-sensitivity in the N170 range: a question of topography and inversion, not one of amplitude. Neuropsychologia 49(7):2082–2089. https://doi.org/10.1016/j.neuropsychologia.2011.03.039

Article  PubMed  Google Scholar 

Boisgueheneuc F, Du, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Samson Y, Zhang S, Dubois B (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain 129(12):3315–3328. https://doi.org/10.1093/brain/awl244

Article  PubMed  Google Scholar 

Bombari D, Schmid PC, Mast S, Birri M, Mast S, F. W., Lobmaier JS (2013) Emotion recognition: the role of featural and configural face information. Q J Experimental Psychol 66(12):2426–2442. https://doi.org/10.1080/17470218.2013.789065

Article  Google Scholar 

Bonner MF, Price AR (2013) Where is the anterior temporal lobe and what does it do? J Neurosci 33(10):4213–4215. https://doi.org/10.1523/JNEUROSCI.0041-13.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosch-Bayard J, Valdés-Sosa P, Virues-Alba T, Aubert-Vázquez E, Roy John E, Harmony T, Riera-Díaz J, Trujillo-Barreto N (2001) 3D statistical Parametric Mapping of EEG Source Spectra by means of Variable Resolution Electromagnetic Tomography (VARETA). Clin Electroencephalogr 32(2):47–61. https://doi.org/10.1177/155005940103200203

Article  CAS  PubMed  Google Scholar 

Brambati SM, Benoit S, Monetta L, Belleville S, Joubert S (2010) The role of the left anterior temporal lobe in the semantic processing of famous faces. NeuroImage 53(2):674–681. https://doi.org/10.1016/j.neuroimage.2010.06.045

Article  PubMed  Google Scholar 

Busch NA, Herrmann CS, Müller MM, Lenz D, Gruber T (2006) A cross-laboratory study of event-related gamma activity in a standard object recognition paradigm. NeuroImage 33(4):1169–1177

Article  PubMed  Google Scholar 

Cardellicchio P, Hilt PM, Dolfini E, Fadiga L, D’Ausilio A (2020) Beta rebound as an index of temporal integration of Somatosensory and Motor signals. Front Syst Neurosci 14:1–12. https://doi.org/10.3389/fnsys.2020.00063

Article  Google Scholar 

Cassim F, Monaca C, Szurhaj W, Bourriez JL, Defebvre L, Derambure P, Guieu JD (2001) Does post-movement beta synchronization reflect an idling motor cortex? NeuroReport 12(17):3859–3863. https://doi.org/10.1097/00001756-200112040-00051

Article  CAS  PubMed  Google Scholar 

Castro-Meneses LJ, Kruger JL, Doherty S (2020) Validating theta power as an objective measure of cognitive load in educational video. Education Tech Research Dev 68(1):181–202. https://doi.org/10.1007/s11423-019-09681-4

Article  Google Scholar 

Cattan G, Andreev A, Mendoza C, Congedo M (2018) The impact of passive head-mounted virtual reality devices on the quality of EEG signals. VRIPHYS 2018–14th Workshop Virtual Real Interact Phys Simulations VRIPHYS 2018 21–27. https://doi.org/10.2312/vriphys.20181064

Cavanagh JF, Frank MJ (2014) Frontal theta as a mechanism for cognitive control. Trends Cogn Sci 18(8):414–421. https://doi.org/10.1016/j.tics.2014.04.012

Article  PubMed  PubMed Central  Google Scholar 

Clus D, Larsen ME, Lemey C, Berrouiguet S (2018) The use of virtual reality in patients with eating disorders: systematic review. J Med Internet Res 20(4):1–9. https://doi.org/10.2196/jmir.7898

Article  Google Scholar 

Codispoti M, De Cesarei A, Ferrari V (2023) Alpha-band oscillations and emotion: a review of studies on picture perception. Psychophysiology 60(12):1–16. https://doi.org/10.1111/psyp.14438

Article  Google Scholar 

Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT Press

Dan A, Reiner M (2017) EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays. Int J Psychophysiol 122:75–84. https://doi.org/10.1016/j.ijpsycho.2016.08.013

Article  PubMed  Google Scholar 

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Article  PubMed  Google Scholar 

Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 34(4):1443–1449. https://doi.org/10.1016/j.neuroimage.2006.11.004

Article  PubMed  Google Scholar 

Dering B, Martin CD, Thierry G (2009) Is the N170 peak of visual event-related brain potentials car-selective? NeuroReport, 20(10), 902–906. https://doi.org/10.1097/WNR.0b013e328327201d

Dravida S, Ono Y, Noah JA, Zhang XZ, Hirsch J (2019) Co-localization of theta-band activity and hemodynamic responses during face perception: simultaneous electroencephalography and functional near-infrared spectroscopy recordings. Neurophotonics 6(04):1. https://doi.org/10.1117/1.nph.6.4.045002

Article  Google Scholar 

Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comput 2(3):293–307. https://doi.org/10.1162/neco.1990.2.3.293

Article  Google Scholar 

Evans AC, Collins DL, Mills SR (1993) 3D statistical neuroanatomical models from 305 MR I volumes. IEEE Nucl Sci Symp Med Imag 108:187721878. https://doi.org/10.1109/NSSMIC.1993.373602

Article  Google Scholar 

Farahibozorg SR, Henson RN, Woollams AM, Hauk O (2022) Distinct roles for the anterior temporal lobe and angular gyrus in the spatiotemporal cortical semantic network. Cereb Cortex (New York N Y : 1991) 32(20):4549–4564. https://doi.org/10.1093/cercor/bhab501

Article  Google Scholar 

Fischer AG, Nigbur R, Klein TA, Danielmeier C, Ullsperger M (2018) Cortical beta power reflects decision dynamics and uncovers multiple facets of post-error adaptation. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-07456-8

Gabana D, Tokarchuk L, Hannon E, Gunes H (2017) Effects of valence and arousal on working memory performance in virtual reality gaming. 2017 7th Int Conf Affect Comput Intell Interact ACII 2017 36–41. https://doi.org/10.1109/ACII.2017.8273576

Glennon C, McElroy SF, Connelly LM, Lawson LM, Bretches AM, Gard AR, Newcomer LR (2018) Use of virtual reality to distract from pain and anxiety. Oncol Nurs Forum, 45(4)

Gonzalez-Argote J (2022) Uso De La Realidad virtual en la rehabilitación. Interdisciplinary Rehabilitation / Rehabilitacion Interdisciplinaria 2:24. https://doi.org/10.56294/ri202224

Article  Google Scholar 

Gromer D, Madeira O, Gast P, Nehfischer M, Jost M, Müller M, Mühlberger A, Pauli P (2018) Height simulation in a virtual reality cave system: validity of fear responses and effects of an immersion manipulation. Front Hum Neurosci 12. https://doi.org/10.3389/fnhum.2018.00372

Gruber T, Müller MM (2002) Effects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG. Cogn Brain Res 13(3):377–392. https://doi.org/10.1016/S0926-6410(01)00130-6

Article  Google Scholar 

Gruber T, Trujillo-Barreto NJ, Giabbiconi CM, Valdés-Sosa PA, Müller MM (2006) Brain electrical tomography (BET) analysis of induced gamma band responses during a simple object recognition task. NeuroImage 29(3):888–900. https://doi.org/10.1016/j.neuroimage.2005.09.004

Article  PubMed  Google Scholar 

Güntekin B, Başar E (2014) A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 58(1):33–51. https://doi.org/10.1016/j.neuropsychologia.2014.03.014

Article  PubMed  Google Scholar 

Hertweck S, Weber D, Alwanni H, Unruh F, Fischbach M, Latoschik ME, Ball T (2019) Brain activity in virtual reality: Assessing signal quality of high-resolution EEG while using head-mounted displays. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 970–971

Ishii R, Shinosaki K, Ukai S, Inouye T, Ishihara T, Yoshimine T, Hirabuki N, Asada H, Kihara T, Robinson SE, Takeda M (1999) Medial prefrontal cortex generates frontal midline theta rhythm. NeuroReport 10(4):675–679. https://doi.org/10.1097/00001756-199903170-00003

Article  CAS  PubMed 

Comments (0)

No login
gif