Abdoli N, Salari N, Darvishi N et al (2022) The global prevalence of major depressive disorder (MDD) among the elderly: a systematic review and meta-analysis. Neurosci Biobehav Rev 132:1067–1073. https://doi.org/10.1016/j.neubiorev.2021.10.041
Adell A, Bortolozzi A, Díaz-Mataix L et al (2010) Serotonin interaction with other transmitter systems. Handb Behav Neurosci 21:259–276. https://doi.org/10.1016/S1569-7339(10)70083-7
Ahmed Z, Tokhi A, Arif M et al (2023) Fraxetin attenuates disrupted behavioral and central neurochemical activity in a model of chronic unpredictable stress. Front Pharmacol 14:1135497. https://doi.org/10.3389/fphar.2023.1135497
Article CAS PubMed PubMed Central Google Scholar
Aizawa H, Cui W, Aida T et al (2020) Dopaminergic signaling in the nucleus accumbens modulates stress-coping strategies during inescapable stress. J Neurosci 40:7241–7254. https://doi.org/10.1523/JNEUROSCI.0444-20.2020
Article PubMed PubMed Central Google Scholar
Atiyah I, Kumarnsit E, Cheaha D, et al (2020) The Effects of Acute Fluoxetine treatment on Hippocampal Spectral Power Density. In: RSU International Research Conference 2020. Bangkok, pp 441–448
Barnstedt O, Mocellin P, Remy S (2024) A hippocampus-accumbens code guides goal-directed appetitive behavior. Nat Commun 15:1–20. https://doi.org/10.1038/s41467-024-47361-x
Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56. https://doi.org/10.1038/nrn2044
Article CAS PubMed Google Scholar
Ben-Shaul Y (2017) OptiMouse: a comprehensive open source program for reliable detection and analysis of mouse body and nose positions. BMC Biol 15:1–22. https://doi.org/10.1186/S12915-017-0377-3/FIGURES/18
Bymaster FP, Zhang W, Carter PA et al (2002) Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology 160:353–361. https://doi.org/10.1007/S00213-001-0986-X
Article CAS PubMed Google Scholar
Çalışkan G, Schulz SB, Gruber D et al (2015) Corticosterone and corticotropin-releasing factor acutely facilitate gamma oscillations in the hippocampus in vitro. Eur J Neurosci 41:31–44. https://doi.org/10.1111/EJN.12750
Can A, Dao DT, Terrillion CE et al (2012) The tail suspension Test. J Visual Exp 12:3769. https://doi.org/10.3791/3769
Chatterjee M, Jaiswal M, Palit G (2012) Comparative evaluation of forced swim test and tail suspension test as models of negative symptom of Schizophrenia in rodents. ISRN Psychiatry 2012:595141. https://doi.org/10.5402/2012/595141
Article PubMed PubMed Central Google Scholar
Cheaha D, Keawpradub N, Sawangjaroen K et al (2015) Effects of an alkaloid-rich extract from Mitragyna speciosa leaves and fluoxetine on sleep profiles, EEG spectral frequency and ethanol withdrawal symptoms in rats. Phytomedicine 22:1000–1008. https://doi.org/10.1016/j.phymed.2015.07.008
Article CAS PubMed Google Scholar
Clark RN, Ashby CR, Dewey SL et al (1996) Effect of acute and chronic fluoxetine on extracellular dopamine levels in the caudate-putamen and nucleus accumbens of rat. Synapse 23:125–131. https://doi.org/10.1002/(SICI)1098-2396(199607)23:3%3c125::AID-SYN1%3e3.0.CO;2-A
Article CAS PubMed Google Scholar
De Deurwaerdère P, Chagraoui A, Di Giovanni G (2021) Serotonin/dopamine interaction: electrophysiological and neurochemical evidence. Prog Brain Res 261:161–264. https://doi.org/10.1016/BS.PBR.2021.02.001
Fitzgerald PJ, Watson BO (2019) In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp Brain Res 237:1593–1614. https://doi.org/10.1007/S00221-019-05556-5
Article PubMed PubMed Central Google Scholar
Guan A, Wang S, Huang A et al (2022) The role of gamma oscillations in central nervous system diseases: mechanism and treatment. Front Cell Neurosci. https://doi.org/10.3389/FNCEL.2022.962957
Article PubMed PubMed Central Google Scholar
Hughes RN, Bakhurin KI, Petter EA et al (2020) Ventral tegmental dopamine neurons control the impulse vector during motivated behavior. Curr Biol 30:2681-2694.e5. https://doi.org/10.1016/J.CUB.2020.05.003
Article CAS PubMed PubMed Central Google Scholar
Iturra-Mena AM, Aguilar-Rivera M, Arriagada-Solimano M et al (2019) Impact of stress on gamma oscillations in the rat nucleus accumbens during spontaneous social interaction. Front Behav Neurosci 13:464454. https://doi.org/10.3389/FNBEH.2019.00151/BIBTEX
Kendall KM, Van Assche E, Andlauer TFM et al (2021) The genetic basis of major depression. Psychol Med 51:2217–2230. https://doi.org/10.1017/S0033291721000441
Article CAS PubMed Google Scholar
Khunphet P, Kumarnsit E, Issuriya A, Cheaha D (2024) Estrogen deficiency affects synchronized neural connectivity in the olfactory bulb-nucleus accumbens circuit: a local field potential study in ovariectomized mouse model. Horm Behav 164:105587. https://doi.org/10.1016/J.YHBEH.2024.105587
Article CAS PubMed Google Scholar
Malhi GS, Mann JJ (2018) Depression. Lancet 392:2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2
Merino E, Raya-Salom D, Teruel-Martí V et al (2021) Effects of acute stress on the oscillatory activity of the hippocampus–amygdala–prefrontal cortex network. Neuroscience 476:72–89. https://doi.org/10.1016/J.NEUROSCIENCE.2021.09.009
Article CAS PubMed Google Scholar
Ng TH, Alloy LB, Smith DV (2019) Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Trans Psychiatry 9:1–10. https://doi.org/10.1038/s41398-019-0644-x
Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468. https://doi.org/10.1016/J.TINS.2008.06.006
Article CAS PubMed Google Scholar
Pavuluri M, Volpe K, Yuen A et al (2017) Nucleus Accumbens and its role in reward and emotional circuitry: a potential hot mess in Substance use and emotional disorders. AIMS Neurosci 52(4):52–70. https://doi.org/10.3934/NEUROSCIENCE.2017.1.52
Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates: hard cover edition. Academic Press
Pittenger C, Duman RS (2007) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 1(33):88–109. https://doi.org/10.1038/sj.npp.1301574
Ravinder S, Pillai AG, Chattarji S (2011) Cellular correlates of enhanced anxiety caused by acute treatment with the selective serotonin reuptake inhibitor fluoxetine in rats. Front Behav Neurosci. https://doi.org/10.3389/FNBEH.2011.00088
Article PubMed PubMed Central Google Scholar
Reakkamnuan C, Kumarnsit E, Cheaha D (2023) Local field potential (LFP) power and phase-amplitude coupling (PAC) changes in the striatum and motor cortex reflect neural mechanisms associated with bradykinesia and rigidity during D2R suppression in an animal model. Prog Neuropsychopharmacol Biol Psychiatry 127:110838. https://doi.org/10.1016/J.PNPBP.2023.110838
Article CAS PubMed Google Scholar
Reyad AA, Plaha K, Girgis E, Mishriky R (2021) Fluoxetine in the management of major depressive disorder in children and adolescents: a meta-analysis of randomized controlled trials. Hosp Pharm 56:525–531. https://doi.org/10.1177/0018578720925384
Shen HW, Hagino Y, Kobayashi K et al (2004) Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29:1790–1799
Comments (0)