Berti S, Schröger E (2003) Working memory controls involuntary attention switching: evidence from an auditory distraction paradigm. Eur J Neurosci 17(5):1119–1122. https://doi.org/10.1046/j.1460-9568.2003.02527.x
Bokura H, Yamaguchi S, Kobayashi S (2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol 112(12):2224–2232. https://doi.org/10.1016/S1388-2457(01)00691-5
Article PubMed CAS Google Scholar
Bruin KJ, Wijers AA (2002) Inhibition, response mode, and stimulus probability: a comparative event-related potential study. Clin Neurophysiol 113(7):1172–1182. https://doi.org/10.1016/S1388-2457(02)00141-4
Article PubMed CAS Google Scholar
Combs LA, Polich J (2006) P3a from auditory white noise stimuli. Clin Neurophysiol 117(5):1106–1112. https://doi.org/10.1016/j.clinph.2006.01.023
Comerchero MD, Polich J (1998) P3a, perceptual distinctiveness, and stimulus modality. Cogn Brain Res 7(1):41–48. https://doi.org/10.1016/S0926-6410(98)00009-3
Comerchero MD, Polich J (1999) P3a and P3b from typical auditory and visual stimuli. Clin Neurophysiol 110(1):24–30. https://doi.org/10.1016/S0168-5597(98)00033-1
Article PubMed CAS Google Scholar
Courchesne E, Hillyard SA, Galambos R (1975) Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalogr Clin Neurophysiol 39(2):131–143. https://doi.org/10.1016/0013-4694(75)90003-6
Article PubMed CAS Google Scholar
Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Escera C, Corral MJ (2007) Role of mismatch negativity and Novelty-P3 in involuntary auditory attention. J Psychophysiol 21(3–4):251–264. https://doi.org/10.1027/0269-8803.21.34.251
Falkenstein M, Hoormann J, Hohnsbein J (1999) ERP components in Go/Nogo tasks and their relation to inhibition. Acta Physiol (Oxf) 101(2):267–291. https://doi.org/10.1016/S0001-6918(99)00008-6
Faul F, Erdfelder E, Buchner A, Lang A-G (2009) Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160. https://doi.org/10.3758/BRM.41.4.1149
Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191. https://doi.org/10.3758/BF03193146
Fein G, Turetsky B (1989) P300 latency variability in normal elderly: effects of paradigm and measurement technique. Electroencephalogr Clin Neurophysiol 72(5):384–394. https://doi.org/10.1016/0013-4694(89)90044-8
Article PubMed CAS Google Scholar
Goldstein A, Spencer KM, Donchin E (2002) The influence of stimulus deviance and novelty on the P300 and Novelty P3. Psychophysiology 39(6):781–790. https://doi.org/10.1017/S004857720201048X
Grillon C, Courchesne E, Ameli R, Elmasian R, Braff D (1990) Effects of rare non-target stimuli on brain electrophysiological activity and performance. Int J Psychophysiol 9(3):257–267. https://doi.org/10.1016/0167-8760(90)90058-L
Article PubMed CAS Google Scholar
Hagen GF, Gatherwright JR, Lopez BA, Polich J (2006) P3a from visual stimuli: task difficulty effects. Int J Psychophysiol 59(1):8–14. https://doi.org/10.1016/j.ijpsycho.2005.08.003
Katayama J, Polich J (1996a) P300 from one-, two-, and three-stimulus auditory paradigms. Int J Psychophysiol 23(1):33–40. https://doi.org/10.1016/0167-8760(96)00030-X
Article PubMed CAS Google Scholar
Katayama J, Polich J (1996b) P300, probability, and the three-tone paradigm. Electroencephalogr Clin Neurophysiol/evoked Potentials Sect 100(6):555–562. https://doi.org/10.1016/S0168-5597(96)95171-0
Katayama J, Polich J (1998) Stimulus context determines P3a and P3b. Psychophysiology 35(1):23–33. https://doi.org/10.1111/1469-8986.3510023
Article PubMed CAS Google Scholar
Katayama J, Polich J (1999) Auditory and visual P300 topography from a 3 stimulus paradigm. Clin Neurophysiol 110(3):463–468. https://doi.org/10.1016/S1388-2457(98)00035-2
Article PubMed CAS Google Scholar
Lopez-Calderon J, Luck SJ (2014) ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci 8:213. https://doi.org/10.3389/fnhum.2014.00213
Article PubMed PubMed Central Google Scholar
Morey RD (2008) Confidence intervals from normalized data: a correction to Cousineau (2005). Tutor Quant Methods Psychol 4(2):61–64. https://doi.org/10.20982/tqmp.04.2.p061
Paller KA, McCarthy G, Roessler E, Allison T, Wood CC (1992) Potentials evoked in human and monkey medial temporal lobe during auditory and visual oddball paradigms. Electroencephalogr Clin Neurophysiol/evoked Potentials Secton 84(3):269–279. https://doi.org/10.1016/0168-5597(92)90008-Y
Polich J (1986) Attention, probability, and task demands as determinants of P300 latency from auditory stimuli. Electroencephalogr Clin Neurophysiol 63(3):251–259. https://doi.org/10.1016/0013-4694(86)90093-3
Article PubMed CAS Google Scholar
Polich J (1987) Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalogr Clin Neurophysiol/evoked Potentials Sect 68(4):311–320. https://doi.org/10.1016/0168-5597(87)90052-9
Polich J (1988) Bifurcated P300 peaks: P3a and P3b revisited? J Clin Neurophysiol 5(3):287–294
Article PubMed CAS Google Scholar
Sanada M, Kuwamoto T, Katayama J (2021) Deviant consonance and dissonance capture attention differently only when task demand is high: an ERP study with three-stimulus oddball paradigm. Int J Psychophysiol 166:1–8. https://doi.org/10.1016/j.ijpsycho.2021.04.008
Sawaki R, Katayama J (2006) Stimulus context determines whether non-target stimuli are processed as task-relevant or distractor information. Clin Neurophysiol 117(11):2532–2539. https://doi.org/10.1016/j.clinph.2006.06.755
Sawaki R, Katayama J (2007) Difficulty of discrimination modulates attentional capture for deviant information. Psychophysiology 44(3):374–382. https://doi.org/10.1111/j.1469-8986.2007.00506.x
Sawaki R, Katayama J (2008) Distractor P3 is associated with attentional capture by stimulus deviance. Clin Neurophysiol 119(6):1300–1309. https://doi.org/10.1016/j.clinph.2008.01.107
Sawaki R, Katayama J (2009) Difficulty of discrimination modulates attentional capture by regulating attentional focus. J Cogn Neurosci 21(2):359–371. https://doi.org/10.1162/jocn.2008.21022
Sawaki R, Luck SJ (2010) Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal. Atten Percept Psychophys 72(6):1455–1470.
Comments (0)