Auditory P3a reflects attentional process, not response inhibition to deviant processing: an ERP study with three-stimulus oddball paradigm

Berti S, Schröger E (2003) Working memory controls involuntary attention switching: evidence from an auditory distraction paradigm. Eur J Neurosci 17(5):1119–1122. https://doi.org/10.1046/j.1460-9568.2003.02527.x

Article  PubMed  Google Scholar 

Bokura H, Yamaguchi S, Kobayashi S (2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol 112(12):2224–2232. https://doi.org/10.1016/S1388-2457(01)00691-5

Article  PubMed  CAS  Google Scholar 

Bruin KJ, Wijers AA (2002) Inhibition, response mode, and stimulus probability: a comparative event-related potential study. Clin Neurophysiol 113(7):1172–1182. https://doi.org/10.1016/S1388-2457(02)00141-4

Article  PubMed  CAS  Google Scholar 

Combs LA, Polich J (2006) P3a from auditory white noise stimuli. Clin Neurophysiol 117(5):1106–1112. https://doi.org/10.1016/j.clinph.2006.01.023

Article  PubMed  Google Scholar 

Comerchero MD, Polich J (1998) P3a, perceptual distinctiveness, and stimulus modality. Cogn Brain Res 7(1):41–48. https://doi.org/10.1016/S0926-6410(98)00009-3

Article  CAS  Google Scholar 

Comerchero MD, Polich J (1999) P3a and P3b from typical auditory and visual stimuli. Clin Neurophysiol 110(1):24–30. https://doi.org/10.1016/S0168-5597(98)00033-1

Article  PubMed  CAS  Google Scholar 

Courchesne E, Hillyard SA, Galambos R (1975) Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalogr Clin Neurophysiol 39(2):131–143. https://doi.org/10.1016/0013-4694(75)90003-6

Article  PubMed  CAS  Google Scholar 

Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Article  PubMed  Google Scholar 

Escera C, Corral MJ (2007) Role of mismatch negativity and Novelty-P3 in involuntary auditory attention. J Psychophysiol 21(3–4):251–264. https://doi.org/10.1027/0269-8803.21.34.251

Article  Google Scholar 

Falkenstein M, Hoormann J, Hohnsbein J (1999) ERP components in Go/Nogo tasks and their relation to inhibition. Acta Physiol (Oxf) 101(2):267–291. https://doi.org/10.1016/S0001-6918(99)00008-6

Article  CAS  Google Scholar 

Faul F, Erdfelder E, Buchner A, Lang A-G (2009) Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160. https://doi.org/10.3758/BRM.41.4.1149

Article  PubMed  Google Scholar 

Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191. https://doi.org/10.3758/BF03193146

Article  PubMed  Google Scholar 

Fein G, Turetsky B (1989) P300 latency variability in normal elderly: effects of paradigm and measurement technique. Electroencephalogr Clin Neurophysiol 72(5):384–394. https://doi.org/10.1016/0013-4694(89)90044-8

Article  PubMed  CAS  Google Scholar 

Goldstein A, Spencer KM, Donchin E (2002) The influence of stimulus deviance and novelty on the P300 and Novelty P3. Psychophysiology 39(6):781–790. https://doi.org/10.1017/S004857720201048X

Article  PubMed  Google Scholar 

Grillon C, Courchesne E, Ameli R, Elmasian R, Braff D (1990) Effects of rare non-target stimuli on brain electrophysiological activity and performance. Int J Psychophysiol 9(3):257–267. https://doi.org/10.1016/0167-8760(90)90058-L

Article  PubMed  CAS  Google Scholar 

Hagen GF, Gatherwright JR, Lopez BA, Polich J (2006) P3a from visual stimuli: task difficulty effects. Int J Psychophysiol 59(1):8–14. https://doi.org/10.1016/j.ijpsycho.2005.08.003

Article  PubMed  Google Scholar 

Katayama J, Polich J (1996a) P300 from one-, two-, and three-stimulus auditory paradigms. Int J Psychophysiol 23(1):33–40. https://doi.org/10.1016/0167-8760(96)00030-X

Article  PubMed  CAS  Google Scholar 

Katayama J, Polich J (1996b) P300, probability, and the three-tone paradigm. Electroencephalogr Clin Neurophysiol/evoked Potentials Sect 100(6):555–562. https://doi.org/10.1016/S0168-5597(96)95171-0

Article  CAS  Google Scholar 

Katayama J, Polich J (1998) Stimulus context determines P3a and P3b. Psychophysiology 35(1):23–33. https://doi.org/10.1111/1469-8986.3510023

Article  PubMed  CAS  Google Scholar 

Katayama J, Polich J (1999) Auditory and visual P300 topography from a 3 stimulus paradigm. Clin Neurophysiol 110(3):463–468. https://doi.org/10.1016/S1388-2457(98)00035-2

Article  PubMed  CAS  Google Scholar 

Lopez-Calderon J, Luck SJ (2014) ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci 8:213. https://doi.org/10.3389/fnhum.2014.00213

Article  PubMed  PubMed Central  Google Scholar 

Morey RD (2008) Confidence intervals from normalized data: a correction to Cousineau (2005). Tutor Quant Methods Psychol 4(2):61–64. https://doi.org/10.20982/tqmp.04.2.p061

Article  Google Scholar 

Paller KA, McCarthy G, Roessler E, Allison T, Wood CC (1992) Potentials evoked in human and monkey medial temporal lobe during auditory and visual oddball paradigms. Electroencephalogr Clin Neurophysiol/evoked Potentials Secton 84(3):269–279. https://doi.org/10.1016/0168-5597(92)90008-Y

Article  CAS  Google Scholar 

Polich J (1986) Attention, probability, and task demands as determinants of P300 latency from auditory stimuli. Electroencephalogr Clin Neurophysiol 63(3):251–259. https://doi.org/10.1016/0013-4694(86)90093-3

Article  PubMed  CAS  Google Scholar 

Polich J (1987) Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalogr Clin Neurophysiol/evoked Potentials Sect 68(4):311–320. https://doi.org/10.1016/0168-5597(87)90052-9

Article  CAS  Google Scholar 

Polich J (1988) Bifurcated P300 peaks: P3a and P3b revisited? J Clin Neurophysiol 5(3):287–294

Article  PubMed  CAS  Google Scholar 

Sanada M, Kuwamoto T, Katayama J (2021) Deviant consonance and dissonance capture attention differently only when task demand is high: an ERP study with three-stimulus oddball paradigm. Int J Psychophysiol 166:1–8. https://doi.org/10.1016/j.ijpsycho.2021.04.008

Article  PubMed  Google Scholar 

Sawaki R, Katayama J (2006) Stimulus context determines whether non-target stimuli are processed as task-relevant or distractor information. Clin Neurophysiol 117(11):2532–2539. https://doi.org/10.1016/j.clinph.2006.06.755

Article  PubMed  Google Scholar 

Sawaki R, Katayama J (2007) Difficulty of discrimination modulates attentional capture for deviant information. Psychophysiology 44(3):374–382. https://doi.org/10.1111/j.1469-8986.2007.00506.x

Article  PubMed  Google Scholar 

Sawaki R, Katayama J (2008) Distractor P3 is associated with attentional capture by stimulus deviance. Clin Neurophysiol 119(6):1300–1309. https://doi.org/10.1016/j.clinph.2008.01.107

Article  PubMed  Google Scholar 

Sawaki R, Katayama J (2009) Difficulty of discrimination modulates attentional capture by regulating attentional focus. J Cogn Neurosci 21(2):359–371. https://doi.org/10.1162/jocn.2008.21022

Article  PubMed  Google Scholar 

Sawaki R, Luck SJ (2010) Capture versus suppression of attention by salient singletons: electrophysiological evidence for an automatic attend-to-me signal. Atten Percept Psychophys 72(6):1455–1470.

Comments (0)

No login
gif