Paraxanthine enhances memory and neuroplasticity more than caffeine in rats

Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR et al (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142(4):941–952. https://doi.org/10.1016/j.neuroscience.2006.07.021

Article  CAS  PubMed  Google Scholar 

Barcelos RP, Souza MA, Amaral GP, Stefanello ST, Bresciani G, Fighera MR et al (2014) Caffeine supplementation modulates oxidative stress markers in the liver of trained rats. Life Sci 96(1–2):40–45. https://doi.org/10.1016/j.lfs.2013.12.002

Article  CAS  PubMed  Google Scholar 

Barnes PJ (2010) Theophylline. Pharmaceuticals (Basel). 3(3):725–747. https://doi.org/10.3390/ph3030725

Benowitz NL, Jacob P3, Mayan H, Denaro C (1995) Sympathomimetic effects of paraxanthine and caffeine in humans. Clin Pharmacol Ther 58(6):684–691. https://doi.org/10.1016/0009-9236(95)90025-X

Article  CAS  PubMed  Google Scholar 

Bettio LEB, Rajendran L, Gil-Mohapel J (2017) The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 79:66–86. https://doi.org/10.1016/j.neubiorev.2017.04.030

Article  PubMed  Google Scholar 

Bhattacharya SK, Satyan KS, Chakrabarti A (1997) Anxiogenic action of caffeine: an experimental study in rats. J Psychopharmacol 11:219–224. https://doi.org/10.1177/026988119701100304

Article  CAS  PubMed  Google Scholar 

Brockwell NT, Eikelboom R, Beninger RJ (1991) Caffeine-induced place and taste conditioning: production of dose-dependent preference and aversion. Pharmacol Biochem Behav 38:513–517. https://doi.org/10.1016/0091-3057(91)90006-N

Article  CAS  PubMed  Google Scholar 

Bruns RF, Daly JW, Snyder SH (1983) Adenosine receptor binding: structure-activity analysis generates extremely potent xanthine antagonists. Proc Natl Acad Sci U S A 80(7):2077–2080. https://doi.org/10.1073/pnas.80.7.2077

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canas PM, Porciúncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM et al (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29(47):14741–14751. https://doi.org/10.1523/JNEUROSCI.3728-09.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carter AJ, O’Connor WT, Carter MJ, Ungerstedt U (1995) Caffeine enhances acetylcholine release in the hippocampus in vivo by a selective interaction with adenosine A1 receptors. J Pharmacol Exp Ther 273(2):637–642

CAS  PubMed  Google Scholar 

Cognato GP, Agostinho PM, Hockemeyer J, Müller CE, Souza DO, Cunha RA (2010) Caffeine and an adenosine A(2A) receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J Neurochem 112(2):453–462. https://doi.org/10.1111/j.1471-4159.2009.06465.x

Article  CAS  PubMed  Google Scholar 

Cova I, Leta V, Mariani C, Pantoni L, Pomati S (2019) Exploring cocoa properties: is theobromine a cognitive modulator? Psychopharmacology 236(2):561–572. https://doi.org/10.1007/s00213-019-5172-0

Article  CAS  PubMed  Google Scholar 

Culig L, Chu X, Bohr VA (2022) Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 78:101636. https://doi.org/10.1016/j.arr.2022.101636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cullen PK, Dulka BN, Ortiz S, Riccio DC, Jasnow AM (2014) GABA-mediated presynaptic inhibition is required for precision of long-term memory. Learn Mem 21(4):180–184. https://doi.org/10.1101/lm.032961.113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139(6):1019–1055. https://doi.org/10.1111/jnc.13724

Article  CAS  PubMed  Google Scholar 

Dall’Igna OP, Porciúncula LO, Souza DO, Cunha RA, Lara DR (2003) Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 138(7):1207–1209. https://doi.org/10.1038/sj.bjp.0705185

Article  CAS  PubMed  Google Scholar 

de Fiebre NC, Sumien N, Forster MJ, de Fiebre CM (2006) Spatial learning and psychomotor performance of C57BL/6 mice: age sensitivity and reliability of individual differences. Age (Dordr) 28(3):235–253. https://doi.org/10.1007/s11357-006-9027-3

Article  PubMed  Google Scholar 

deToledo-Morrell L, Geinisman Y, Morrell F (1988) Age-dependent alterations in hippocampal synaptic plasticity: relation to memory disorders. Neurobiol Aging 9(5–6):581–590. https://doi.org/10.1016/s0197-4580(88)80117-9

Article  CAS  PubMed  Google Scholar 

Devasagayam TP, Kamat JP, Mohan H, Kesavan PC (1996) Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochim Biophys Acta 1282(1):63–70. https://doi.org/10.1016/0005-2736(96)00040-5

Article  PubMed  Google Scholar 

Domek-Łopacińska KU, Strosznajder JB (2010) Cyclic GMP and nitric oxide synthase in aging and Alzheimer’s disease. Mol Neurobiol 41(2–3):129–137. https://doi.org/10.1007/s12035-010-8104-x

Article  CAS  PubMed  Google Scholar 

Duarte JM, Agostinho PM, Carvalho RA, Cunha RA (2012) Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS ONE 7(4):e21899. https://doi.org/10.1371/journal.pone.0021899

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eskelinen MH, Kivipelto M (2010) Caffeine as a protective factor in dementia and Alzheimer’s disease. J Alzheimers Dis 20(Suppl 1):S167–S174. https://doi.org/10.3233/JAD-2010-1404

Article  CAS  PubMed  Google Scholar 

Espinosa J, Rocha A, Nunes F, Costa MS, Schein V, Kazlauckas V et al (2013) Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia. J Alzheimers Dis 34(2):509–518. https://doi.org/10.3233/JAD-111982

Article  CAS  PubMed  Google Scholar 

Fabiani C, Murray AP, Corradi J, Antollini SS (2018) A novel pharmacological activity of caffeine in the cholinergic system. Neuropharmacology 135:464–473. https://doi.org/10.1016/j.neuropharm.2018.03.041

Article  CAS  PubMed  Google Scholar 

Ferré S, Orrú M, Guitart X (2013) Paraxanthine: connecting caffeine to nitric oxide neurotransmission. J Caffeine Res 3(2):72–78. https://doi.org/10.1089/jcr.2013.0006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzpatrick MF, Engleman HM, Boellert F, McHardy R, Shapiro CM, Deary IJ, Douglas NJ (1992) Effect of therapeutic theophylline levels on the sleep quality and daytime cognitive performance of normal subjects. Am Rev Respir Dis 145(6):1355–1358. https://doi.org/10.1164/ajrccm/145.6.1355

Article  CAS  PubMed  Google Scholar 

Gonçalves FQ, Lopes JP, Silva HB, Lemos C, Silva AC, Gonçalves N et al (2019) Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol Dis 132:104570. https://doi.org/10.1016/j.nbd.2019.104570

Article  CAS  PubMed  Google Scholar 

Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 74(4):980–989. https://doi.org/10.1124/mol.108.048207

Article  CAS  PubMed 

Comments (0)

No login
gif