Szakály Z, Kovács S, Pető K, Huszka P, Kiss M. A modified model of the willingness to pay for functional foods. Appetite. 2019;138:94–101. https://doi.org/10.1016/j.appet.2019.03.020.
Benziger CP, Roth GA, Moran AE. The global burden of disease study and the preventable burden of NCD. Glob heart. 2016;11:393–7. https://doi.org/10.1016/j.gheart.2016.10.024.
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging targets in type 2 diabetes and diabetic complications. Adv Sci. 2021;8:2100275 https://doi.org/10.1002/advs.202100275.
Ki H, Jang H, Oh J, Han G-R, Lee H, Kim S, et al. Simultaneous detection of serum glucose and glycated albumin on a paper-based sensor for acute hyperglycemia and diabetes mellitus. Anal Chem. 2020;92:11530–4. https://doi.org/10.1021/acs.analchem.0c02940.
Article CAS PubMed Google Scholar
Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, Sargheini N, Vo T-TKS, et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications—risks and mitigation. EPMA J. 2023;14:21–42. https://doi.org/10.1007/s13167-023-00314-8.
Article PubMed PubMed Central Google Scholar
Corrales PP, Castañeda VB, Ampudia-Blasco F. Update on postprandial hyperglycemia: the pathophysiology, prevalence, consequences and implications of treating diabetes. Rev Clin Esp. 2020;220:57–68. https://doi.org/10.1016/j.rceng.2018.12.002.
Li C, Deng S, Liu W, Zhou D, Huang Y, Liang C-Q, et al. α-Glucosidase inhibitory and anti-inflammatory activities of dammarane triterpenoids from the leaves of Cyclocarya paliurus. Bioinorg Chem. 2021;111:104847. https://doi.org/10.1016/j.bioorg.2021.104847.
Atkinson FS, Brand-Miller JC, Foster-Powell K, Buyken AE, Goletzke J. International tables of glycemic index and glycemic load values 2021: a systematic review. Am J Clin Nutr. 2021;114:1625–32. https://doi.org/10.1093/ajcn/nqab233.
Article CAS PubMed Google Scholar
Liu A, Li M, Wang J, Feng F, Zhang Y, Qiu Z, et al. Ag@ Au core/shell triangular nanoplates with dual enzyme-like properties for the colorimetric sensing of glucose. Chinese Chem Lett. 2020;31:1133–6. https://doi.org/10.1016/j.cclet.2019.10.011.
Shi M, Cen Y, Xu G, Wei F, Xu X, Cheng X, et al. Ratiometric fluorescence monitoring of α-glucosidase activity based on oxidase-like property of MnO2 nanosheet and its application for inhibitor screening. Anal Chim Acta. 2019;1077:225–31. https://doi.org/10.1016/j.aca.2019.05.037.
Article CAS PubMed Google Scholar
Paşayeva L, Özalp B, Fatullayev H. Potential enzyme inhibitory properties of extracts and fractions from fruit latex of Ficus carica-based on inhibition of α-amylase and α-glucosidase. J Food Meas Charact. 2020;14:2819–27. https://doi.org/10.1007/s11694-020-00527-9.
Papoutsis K, Zhang J, Bowyer MC, Brunton N, Gibney ER, Lyng J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021;338:128119. https://doi.org/10.1016/j.foodchem.2020.128119.
Article CAS PubMed Google Scholar
Proença C, Ribeiro D, Freitas M, Fernandes E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review. Crit Rev Food Sci Nutr. 2022;62:3137–207. https://doi.org/10.1080/10408398.2020.1862755.
Article CAS PubMed Google Scholar
Hossain U, Das AK, Ghosh S, Sil PC. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem Toxicol. 2020;145:111738. https://doi.org/10.1016/j.fct.2020.111738.
Article CAS PubMed PubMed Central Google Scholar
Li X, Bai Y, Jin Z, Svensson B. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. Lwt. 2022;153:112455. https://doi.org/10.1016/j.lwt.2021.112455.
Xue H, Zhang P, Zhang C, Gao Y, Tan J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int J Biol Macromol. 2024;262:129923. https://doi.org/10.1016/j.ijbiomac.2024.129923.
Article CAS PubMed Google Scholar
Zhou C, Li C, Siva S, Cui H, Lin L. Chemical composition, antibacterial activity and study of the interaction mechanisms of the main compounds present in the Alpinia galanga rhizomes essential oil. Ind Crops Prod. 2021;165:113441. https://doi.org/10.1016/j.indcrop.2021.113441.
Ge X, Liang Q, Long Y, Shen H, Zhang Q, Sun Z, et al. Assessment of fresh Alpinia galanga (A. galanga) drying techniques for the chemical composition of essential oil and its antioxidant and biological activity. Food Chem. 2022;392:133314. https://doi.org/10.1016/j.foodchem.2022.133314.
Article CAS PubMed Google Scholar
Sahoo S, Singh S, Sahoo A, Sahoo BC, Jena S, Kar B, et al. Molecular and phytochemical stability of long term micropropagated greater galanga (Alpinia galanga) revealed suitable for industrial applications. Ind Crops Prod. 2020;148:112274. https://doi.org/10.1016/j.indcrop.2020.112274.
Das G, Patra JK, Gonçalves S, Romano A, Gutiérrez-Grijalva EP, Heredia JB, et al. Galangal, the multipotent super spices: A comprehensive review. Trends Food Sci Technol. 2020;101:50–62. https://doi.org/10.1016/j.tifs.2020.04.032.
Croteau R, Kutchan TM, Lewis NG. Natural products (secondary metabolites). Biochem Mol Biol Plants. 2000; https://instruct.uwo.ca/biology/407b/restricted/pdf/Chpt24.pdf.
Zhou Y-Q, Liu H, He M-X, Wang R, Zeng Q-Q, Wang Y, et al. A review of the botany, phytochemical, and pharmacological properties of galangal. In: Natural and artificial flavoring agents and food dyes, Handbook of Food Bioengineering. Academic Press; 2018. pp. 351–96. https://doi.org/10.1016/B978-0-12-811518-3.00011-9.
Noro T, Sekiya T, Katoh M, Oda Y, Miyase T, Kuroyanagi M, et al. Inhibitors of xanthine oxidase from Alpinia galanga. Chem Pharm Bull. 1988;36:244–8. https://doi.org/10.1248/cpb.36.244.
Stange JrRR, Sims JJ, Midland SL, Mcdonald RE. Isolation of a phytoalexin, trans-p-coumaryl aldehyde, from Cucurbita maxima, Cucurbitaceae. Phytochemistry. 1999;52:41–43. https://doi.org/10.1016/S0031-9422(99)00111-9.
Ly TN, Shimoyamada M, Kato K, Yamauchi R. Isolation and characterization of some antioxidative compounds from the rhizomes of smaller galanga (Alpinia officinarum Hance). J Agric Food Chem. 2003;51:4924–9. https://doi.org/10.1021/jf034295m.
Article CAS PubMed Google Scholar
Chakraborty A, Panda AK, Ghosh R, Roy I, Biswas A. Depicting the DNA binding and photo-nuclease ability of anti-mycobacterial drug rifampicin: A biophysical and molecular docking perspective. Int J Biol Macromol. 2019;127:187–96. https://doi.org/10.1016/j.ijbiomac.2019.01.034.
Article CAS PubMed Google Scholar
Dlamini BS, Chen C-R, Shih W-L, Chen Y-K, Hsu J-L, Chang C-I. Insights into the α-amylase and α-glucosidase inhibition mechanism of 4-(4-hydroxyphenyl)-but-3-en-2-one from Scutellaria barbata D. Don: enzymatic kinetics, fluorescence spectroscopy and computational simulation. Med Chem Res. 2022;31:2007–20. https://doi.org/10.1007/s00044-022-02966-z.
Chen P-C, Dlamini BS, Chen C-R, Kuo Y-H, Shih W-L, Lin Y-S, et al. Structure related α-glucosidase inhibitory activity and molecular docking analyses of phenolic compounds from Paeonia suffruticosa. Med Chem Res. 2022;31:293–306. https://doi.org/10.1007/s00044-021-02830-6.
Comments (0)