Stewart FHC. The chemistry of the sydnones. Chem Rev. 1964;64:129–47. https://doi.org/10.1021/cr60228a004
Mummel S, Lederle F, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Sydnone methides: intermediates between mesoionic compounds and mesoionic N-heterocyclic olefins. Eur J Org Chem. 2023;26:e202300216. https://doi.org/10.1002/ejoc.202300216
Cherepanov IYA, Moiseev SK. Recent developments in the chemistry of sydnones and sydnone imines. Adv Heterocycl Chem. 2020;131:49–164. https://doi.org/10.1016/bs.aihch.2019.11.003
Earl JC, Mackney AW. The action of acetic anhydride on N-nitrosophenylglycine and some of its derivatives. J Chem Soc. 1935:899–900. https://doi.org/10.1039/JR9350000899
Gimadiev TR, Klimchuk O, Nugmanov RI, Madzhidov TI, Varnek A. Sydnone-alkyne cycloaddition: which factors are responsible for reaction rate? J Mol Struct. 2019;1198:126897. https://doi.org/10.1016/j.molstruc.2019.126897
Decuypère E, Plougastel L, Audisio D, Taran F. Sydnone–alkyne cycloaddition: applications in synthesis and bioconjugation. Chem Commun. 2017;53:11515–27. https://doi.org/10.1039/C7CC06405E
Zerbib S, Khouili M, Catto M, Bouissane L. Sydnone: synthesis, reactivity and biological activities. Curr Med Chem. 2023;30:1122–44. https://doi.org/10.2174/0929867329666220620123050
Article CAS PubMed Google Scholar
Patel YM, Patel KC. Synthesis and biological evaluation of new sydnone-based derivatives. J Saudi Chem Soc. 2015;19:193–9. https://doi.org/10.1016/j.jscs.2012.02.005
Cherevatskaya M, Cherepanov I, Kalganova N, Erofeeva N, Romanovskaya E, Frolov A, et al. Sydnone imines as a new class of promising plant growth and stress tolerance modulators—a first experimental structure–activity overview. Stresses. 2024;4:133–54. https://doi.org/10.3390/stresses4010008
Pétry N, Luttringer F, Bantreil X, Lamaty F. A mechanochemical approach to the synthesis of sydnones and derivatives. Faraday Discuss. 2023;241:114–27. https://doi.org/10.1039/D2FD00096B
Chandrasekhar R, Nanjan MJ. Sydnones: a brief review. Mini-Rev Med Chem. 2012;12:1359–65. https://doi.org/10.2174/13895575112091359
Article CAS PubMed Google Scholar
Gireesh T, Kamble RR, Kattimani PP, Dorababu A, Manikantha M, Hoskeri JH. Synthesis of sydnone substituted biginelli derivatives as hyaluronidase inhibitors. Arch Pharm. 2013;346:645–53. https://doi.org/10.1002/ardp.201300118
Hossain SL, Mathews M, Bhyranalyar Nagarajappa VS, Kumar BK, Veerappa Yelamaggad CV. Antiproliferative CRS apoptosis-inducing activity and molecular docking studies of sydnones compounds. J Cancer Res Ther. 2022;18:681–90. https://doi.org/10.4103/jcrt.JCRT_1614_20.
Galuppo LF, dos Reis Lívero FA, Martins GG, Cardoso CC, Beltrame OC, Klassen LMB, et al. Sydnone 1: a mesoionic compound with antitumoral and haematological effects in vivo. Basic Clin Pharmacol Toxicol. 2016;119:41–50. https://doi.org/10.1111/bcpt.12545
Article CAS PubMed Google Scholar
Dorababu A, Kamble RR, Shaikh SKJ, Somagond SM, Bayannavar PK, Joshi SD. Synthesis, docking, and pharmacological evaluation of derivatives of α-aminoketones appended to sydnones as potent antitubercular and antifungal scaffolds. J Heterocycl Chem. 2019;56:2430–41. https://doi.org/10.1002/jhet.3630
Shih M-H, Su Y-S, Wu C-L. Syntheses of aromatic substituted hydrazino-thiazole derivatives to clarify structural characterization and antioxidant activity between 3-arylsydnonyl and aryl substituted hydrazino-thiazoles. Chem Pharm Bull. 2007;55:1126–35. https://doi.org/10.1248/cpb.55.1126
Deshpande SR, Pai KV. Synthesis, antibacterial and analgesic activities of 4-[1-Oxo-3-(substituted aryl)-2-propenyl]-3-(4-methylphenyl) sydnones. J Chem. 2010;7:237473. https://doi.org/10.1155/2010/237473.
Savaliya PP, Akbari VK, Modi JA, Patel KC. Synthesis, characterization, and antimicrobial screening of some Mannich base sydnone derivatives. Med Chem Res. 2013;22:5789–97. https://doi.org/10.1007/s00044-013-0568-6
Du S, Hu X, Shao X, Qian X. Novel trifluoromethyl sydnone derivatives: design, synthesis and fungicidal activity. Bioorg Med Chem Lett. 2021;44:128114. https://doi.org/10.1016/j.bmcl.2021.128114
Article CAS PubMed Google Scholar
Yeh M-Y, Tien H-J, Huang L-Y, Chen M-H. Sydnone compounds. XX. The synthesis and the schmidt reaction of 4-formyl-3-arylsydnone. J Chin Chem Soc. 1983;30:29–37. https://doi.org/10.1002/jccs.198300005
Shih M-H, Ke F-Y. Syntheses and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorg Med Chem. 2004;12:4633–43. https://doi.org/10.1016/j.bmc.2004.06.033
Article CAS PubMed Google Scholar
Thoman CJ, Voaden DJ, Hunsberger IM. Direct formylation of sydnones1a,b. J Org Chem. 1964;29:2044–5. https://doi.org/10.1021/jo01030a525
Asundaria ST, Pannecouque C, De Clercq E, Supuran CT, Patel KC. Synthesis of novel biologically active methylene derivatives of sydnones. Med Chem Res. 2013;22:5752–63. https://doi.org/10.1007/s00044-013-0567-7
Mummel S, Lederle F, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Sydnone methides—a forgotten class of mesoionic compounds for the generation of anionic N-heterocyclic carbenes. Angew Chem Int Ed. 2021;60:18882–7. https://doi.org/10.1002/anie.202107495
Choudhury LH, Parvin T. Recent advances in the chemistry of imine-based multicomponent reactions (MCRs). Tetrahedron 2011;67:8213–28. https://doi.org/10.1016/j.tet.2011.07.020
Article CAS PubMed PubMed Central Google Scholar
Yang L, Liu H, Xia D, Wang S. Antioxidant properties of camphene-based thiosemicarbazones: experimental and theoretical evaluation. Molecules 2020;25:1192. https://doi.org/10.3390/molecules25051192
Article CAS PubMed PubMed Central Google Scholar
Govender H, Mocktar C, Kumalo HM, Koorbanally NA. Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones. Phosphorus Sulfur Silicon Relat Elem. 2019;194:1074–81. https://doi.org/10.1080/10426507.2019.1618298
Bai X-G, Zheng Y, Qi J. Advances in thiosemicarbazone metal complexes as anti-lung cancer agents. Front Pharmacol. 2022;13. https://doi.org/10.3389/fphar.2022.1018951
Bajaj K, Buchanan RM, Grapperhaus CA. Antifungal activity of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes. J Inorg Biochem. 2021;225:111620. https://doi.org/10.1016/j.jinorgbio.2021.111620
Article CAS PubMed Google Scholar
Benmohammed A, Rekiba N, Sehanine Y, Louail AA, Khoumeri O, Kadiri M, et al. Synthesis and antimicrobial activities of new thiosemicarbazones and thiazolidinones in indole series. Chem Mon. 2021;152:977–86. https://doi.org/10.1007/s00706-021-02823-6
Fonseca NC, da Cruz LF, da Silva Villela F, do Nascimento Pereira GA, de Siqueira-Neto JL, Kellar D, et al. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases Rhodesian, Cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob Agents Chemother. 2015;59:2666–77. https://doi.org/10.1128/aac.04601-14
Article CAS PubMed PubMed Central Google Scholar
Thanh DN, Duc TH, Hue HMN, Van TKH. Reaction of some substituted 3-aryl-4-formylsydnones with tetra-O-acetyl-β-D-galactopyranosyl) thiosemicarbazide. Lett Org Chem. 2016;13:541–6. https://doi.org/10.2174/1570178613666160824104037.
Thoman CJ, Voaden DJ. 3-Phenylsydnone. Org Synth. 1965;45:96.
Lemieux R. Tetra-O-acetyl-β-D-glucopyranosyl bromide. Methods in carbohydrate chemistry. New York: Academic Press; 1963. pp. 221-222.
Tashpulatov AA, Afanas’ev VA, Lidak MY, Sukhova NM, Popelis YY, Rakhmatullaev I. Synthesis and transformations
Comments (0)