Comprehensive analysis of H3K27me3 LOCKs under different DNA methylation contexts reveal epigenetic redistribution in tumorigenesis

Bieluszewski T, Xiao J, Yang Y, Wagner D. PRC2 activity, recruitment, and silencing: a comparative perspective. Trends Plant Sci. 2021;26(11):1186–98.

Article  CAS  PubMed  Google Scholar 

Mantsoki A, Devailly G, Joshi A. CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells. Sci Rep. 2015;5:16791.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeon AJ, Tucker-Kellogg G. Bivalent genes that undergo transcriptional switching identify networks of key regulators of embryonic stem cell differentiation. BMC Genomics. 2020;21:614.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar D, Cinghu S, Oldfield AJ, Yang P, Jothi R. Decoding the function of bivalent chromatin in development and cancer. Genome Res. 2021;31(12):2170–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petruk S, Cai J, Sussman R, Sun G, Kovermann SK, Mariani SA, Calabretta B, McMahon SB, Brock HW, Iacovitti L, et al. Delayed accumulation of H3K27me3 on nascent DNA is essential for recruitment of transcription factors at early stages of stem cell differentiation. Mol Cell. 2017;66(2):247–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sara A, Miller MD, Kingston RE. H3K27me3 is dispensable for early differentiation but required to maintain differentiated cell identity. bioRXiv. 2020.

Google Scholar 

Zhao D, Zhang L, Zhang M, Xia B, Lv J, Gao X, Wang G, Meng Q, Yi Y, Zhu S, et al. Broad genic repression domains signify enhanced silencing of oncogenes. Nat Commun. 2020;11(1):5560.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai Y, Zhang Y, Loh YP, Tng JQ, Lim MC, Cao Z, Raju A, Lieberman Aiden E, Li S, Manikandan L, et al. H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nat Commun. 2021;12(1):719.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deblois G, Tonekaboni SAM, Grillo G, Martinez C, Kao YI, Tai F, Ettayebi I, Fortier AM, Savage P, Fedor AN, et al. Epigenetic switch-induced viral mimicry evasion in chemotherapy-resistant breast cancer. Cancer Discov. 2020;10(9):1312–29.

Article  CAS  PubMed  Google Scholar 

Yuan J, Jiang Q, Gong T, Fan D, Zhang J, Chen F, Zhu X, Wang X, Qiao Y, Chen H, et al. Loss of grand histone H3 lysine 27 trimethylation domains mediated transcriptional activation in esophageal squamous cell carcinoma. NPJ Genom Med. 2021;6(1):65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madani Tonekaboni SA, Haibe-Kains B, Lupien M. Large organized chromatin lysine domains help distinguish primitive from differentiated cell populations. Nat Commun. 2021;12(1):499.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madani Tonekaboni SA, Mazrooei P, Kofia V, Haibe-Kains B, Lupien M. Identifying clusters of cis-regulatory elements underpinning TAD structures and lineage-specific regulatory networks. Genome Res. 2019;29(10):1733–43.

Article  PubMed  PubMed Central  Google Scholar 

Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet. 2009;41(2):246–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sergeeva A, Davydova K, Perenkov A, Vedunova M. Mechanisms of human DNA methylation, alteration of methylation patterns in physiological processes and oncology. Gene. 2023;875:147487.

Article  CAS  PubMed  Google Scholar 

Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jonsson ME, Ludvik Brattas P, Gustafsson C, Petri R, Yudovich D, Pircs K, Verschuere S, Madsen S, Hansson J, Larsson J, et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat Commun. 2019;10(1):3182.

Article  PubMed  PubMed Central  Google Scholar 

Hur K, Cejas P, Feliu J, Moreno-Rubio J, Burgos E, Boland CR, Goel A. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut. 2014;63(4):635–46.

Article  CAS  PubMed  Google Scholar 

Johnstone SE, Gladyshev VN, Aryee MJ, Bernstein BE. Epigenetic clocks, aging, and cancer. Science. 2022;378(6626):1276–7.

Article  CAS  PubMed  Google Scholar 

Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

Article  CAS  PubMed  Google Scholar 

Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983;11(19):6883–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA, et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet. 2011;44(1):40–6.

Article  PubMed  PubMed Central  Google Scholar 

Salhab A, Nordstrom K, Gasparoni G, Kattler K, Ebert P, Ramirez F, Arrigoni L, Muller F, Polansky JK, Cadenas C, et al. A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains. Genome Biol. 2018;19(1):150.

Article  PubMed  PubMed Central  Google Scholar 

Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE, et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 2012;22(2):246–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova M, Warnatz HJ, et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature. 2014;510(7506):537–41.

Article  CAS  PubMed  Google Scholar 

Decato BE, Qu J, Ji X, Wagenblast E, Knott SRV, Hannon GJ, Smith AD. Characterization of universal features of partially methylated domains across tissues and species. Epigenetics Chromatin. 2020;13(1):39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkman AB, Nik-Zainal S, Simmer F, Rodriguez-Gonzalez FG, Smid M, Alexandrov LB, Butler A, Martin S, Davies H, Glodzik D, et al. Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation. Nat Commun. 2019;10(1):1749.

Article  PubMed  PubMed Central  Google Scholar 

Zhou W, Dinh HQ, Ramjan Z, Weisenberger DJ, Nicolet CM, Shen H, Laird PW, Berman BP. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet. 2018;50(4):591–602.

Article  CAS  PubMed 

Comments (0)

No login
gif