Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607.
Article CAS PubMed Google Scholar
Wu H, Zhang Y, Reversing. DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156(1–2):45–68.
Article CAS PubMed PubMed Central Google Scholar
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000;97(10):5237–42.
Article CAS PubMed PubMed Central Google Scholar
Arányi T, Kerjean A, Tóth S, Mallet J, Meloni R, Páldi A. Paradoxical methylation of the tyrosine hydroxylase gene in mouse preimplantation embryos. Genomics. 2002;80(6):558–63.
Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.
Article CAS PubMed Google Scholar
Métivier R, Gallais R, Tiffoche C, Le Péron C, Jurkowska RZ, Carmouche RP, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature. 2008;452(7183):45–50.
Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PW, D’Souza Z, et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat Cell Biol. 2016;18(2):225–33.
Article CAS PubMed PubMed Central Google Scholar
Aranyi T, Stockholm D, Yao R, Poinsignon C, Wiart T, Corre G, et al. Systemic epigenetic response to recombinant lentiviral vectors independent of proviral integration. Epigenetics Chromatin. 2016;9:29.
Article PubMed PubMed Central Google Scholar
Chen Z, Zhang Y. Role of mammalian DNA methyltransferases in Development. Annu Rev Biochem. 2020;89:135–58.
Article CAS PubMed Google Scholar
Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905.
Article PubMed PubMed Central Google Scholar
Schulz M, Teissandier A, De La Mata Santaella E, Armand M, Iranzo J, El Marjou F, et al. DNA methylation restricts coordinated germline and neural fates in embryonic stem cell differentiation. Nat Struct Mol Biol. 2024;31(1):102–14.
Article CAS PubMed Google Scholar
Smith ZD, Meissner A. The simplest explanation: passive DNA demethylation in PGCs. EMBO J. 2013;32(3):318–21.
Article CAS PubMed PubMed Central Google Scholar
Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129–33.
Article CAS PubMed PubMed Central Google Scholar
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.
Article CAS PubMed PubMed Central Google Scholar
Hashimoto H, Pais JE, Dai N, Corrêa IR, Zhang X, Zheng Y, et al. Structure of Naegleria Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA. Nucleic Acids Res. 2015;43(22):10713–21.
Article CAS PubMed PubMed Central Google Scholar
Parry A, Rulands S, Reik W. Active turnover of DNA methylation during cell fate decisions. Nat Rev Genet. 2021;22(1):59–66.
Article CAS PubMed Google Scholar
Reizel Y, Sabag O, Skversky Y, Spiro A, Steinberg B, Bernstein D, et al. Postnatal DNA demethylation and its role in tissue maturation. Nat Commun. 2018;9(1):2040.
Article PubMed PubMed Central Google Scholar
Liang X, Aranyi T, Zhou J, Guan Y, Hu H, Liu H, et al. Tet2- and Tet3- mediated cytosine hydroxymethylation in Six2 progenitor cells in mice is critical for Nephron Progenitor differentiation and Nephron Endowment. J Am Soc Nephrol. 2023;34(4):572–89.
Hermann A, Goyal R, Jeltsch A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem. 2004;279(46):48350–9.
Article CAS PubMed Google Scholar
Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007;450(7171):908–12.
Article CAS PubMed Google Scholar
Schermelleh L, Haemmer A, Spada F, Rösing N, Meilinger D, Rothbauer U, et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res. 2007;35(13):4301–12.
Article CAS PubMed PubMed Central Google Scholar
Spada F, Haemmer A, Kuch D, Rothbauer U, Schermelleh L, Kremmer E, et al. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J Cell Biol. 2007;176(5):565–71.
Article CAS PubMed PubMed Central Google Scholar
Nishiyama A, Yamaguchi L, Nakanishi M. Regulation of maintenance DNA methylation via histone ubiquitylation. J Biochem. 2016;159(1):9–15.
Article CAS PubMed Google Scholar
Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, Ankri S, et al. Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol. 2017;14(9):1108–23.
Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):219–20.
Article CAS PubMed Google Scholar
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.
Article CAS PubMed Google Scholar
Auclair G, Guibert S, Bender A, Weber M. Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol. 2014;15(12):545.
Article PubMed PubMed Central Google Scholar
Chen T, Ueda Y, Xie S, Li E. A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J Biol Chem. 2002;277(41):38746–54.
Article CAS PubMed Google Scholar
La Salle S, Trasler JM. Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse. Dev Biol. 2006;296(1):71–82.
Gu T, Hao D, Woo J, Huang TW, Guo L, Lin X, et al. The disordered N-terminal domain of DNMT3A recognizes H2AK119ub and is required for postnatal development. Nat Genet. 2022;54(5):625–36.
Comments (0)