Moini J, Piran P. Chapter 1 - Histophysiology. In: Moini J, Piran P, editors. Functional and Clinical Neuroanatomy. New York: Academic Press; 2020. p. 1–49.
Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 2014;16(7):896–913. https://doi.org/10.1093/neuonc/nou087.
Article CAS PubMed PubMed Central Google Scholar
Ostrom QT, Cote DJ, Ascha M, Kruchko C, Barnholtz-Sloan JS. Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol. 2018;4(9):1254–62.
Article PubMed PubMed Central Google Scholar
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20. https://doi.org/10.1007/s00401-016-1545-1.
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4.
Article PubMed PubMed Central Google Scholar
Liang J, Lv X, Lu C, Ye X, Chen X, Fu J, Luo C, Zhao Y. Prognostic factors of patients with Gliomas – an analysis on 335 patients with Glioblastoma and other forms of Gliomas. BMC Cancer. 2020;20(1):35. https://doi.org/10.1186/s12885-019-6511-6.
Article CAS PubMed PubMed Central Google Scholar
Claus EB, Walsh KM, Wiencke JK, Molinaro AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R, Wrensch M. Survival and low-grade glioma: the emergence of genetic information. Neurosurg Focus. 2015;38(1):E6–E6. https://doi.org/10.3171/2014.10.FOCUS12367.
Article PubMed PubMed Central Google Scholar
Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018;70(3):412–45.
Article CAS PubMed PubMed Central Google Scholar
Ang SYL, Lee L, See AAQ, Ang TY, Ang BT, King NKK. Incidence of biomarkers in high-grade gliomas and their impact on survival in a diverse SouthEast Asian cohort - a population-based study. BMC Cancer. 2020;20(1):79. https://doi.org/10.1186/s12885-020-6536-x.
Article CAS PubMed PubMed Central Google Scholar
Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, Vazquez-Ramos C, Mahato D, Tavanaiepour D, Rahmathulla G, Quinones-Hinojosa A. Advances in Brain Tumor Surgery for Glioblastoma in Adults. Brain Sci. 2017;7:12. https://doi.org/10.3390/brainsci7120166.
Kong D-S. Cancer stem cells in brain tumors and their lineage hierarchy. Int J Stem Cells. 2012;5(1):12–5. https://doi.org/10.15283/ijsc.2012.5.1.12.
Article PubMed PubMed Central Google Scholar
Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep. 2017;50(3):117–25. https://doi.org/10.5483/bmbrep.2017.50.3.222.
Article CAS PubMed PubMed Central Google Scholar
Pinto JA, Bravo L, Chirinos LA, Vigil CE. Expression of DDIT4 Is Correlated with NOTCH1 and High Molecular Risk in Acute Myeloid Leukemias. Blood. 2016;128(22):5254–5254. https://doi.org/10.1182/blood.V128.22.5254.5254.
Ho K-H, Chen P-H, Chou C-M, Shih C-M, Lee Y-T, Cheng C-H, Chen K-C. A key role of DNA Damage-Inducible Transcript 4 (DDIT4) Connects Autophagy and GLUT3-Mediated stemness to desensitize temozolomide efficacy in glioblastomas. Neurotherapeutics. 2020;17(3):1212–27. https://doi.org/10.1007/s13311-019-00826-0.
Article CAS PubMed PubMed Central Google Scholar
Gharibi B, Ghuman M, Hughes FJ. DDIT4 regulates mesenchymal stem cell fate by mediating between HIF1α and mTOR signalling. Sci Rep. 2016;6(1):36889. https://doi.org/10.1038/srep36889.
Article CAS PubMed PubMed Central Google Scholar
Fattahi F, Kiani J, Alemrajabi M, Soroush A, Naseri M, Najafi M, Madjd Z. Overexpression of DDIT4 and TPTEP1 are associated with metastasis and advanced stages in colorectal cancer patients: a study utilizing bioinformatics prediction and experimental validation. Cancer Cell Int. 2021;21(1):303. https://doi.org/10.1186/s12935-021-02002-x.
Article CAS PubMed PubMed Central Google Scholar
Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, Moshel Y, Elbaz S, Budanov A, Chajut A. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol. 2002;22(7):2283–93.
Article CAS PubMed PubMed Central Google Scholar
Protiva P, Hopkins ME, Baggett S, Yang H, Lipkin M, Holt PR, Kennelly EJ, Bernard WI. Growth inhibition of colon cancer cells by polyisoprenylated benzophenones is associated with induction of the endoplasmic reticulum response. Int J Cancer. 2008;123(3):687–94. https://doi.org/10.1002/ijc.23515.
Article CAS PubMed Google Scholar
Wang Y, Han E, Xing Q, Yan J, Arrington A, Wang C, Tully D, Kowolik CM, Lu DM, Frankel PH, Zhai J, Wen W, Horne D, Yip MLR, Yim JH. Baicalein upregulates DDIT4 expression which mediates mTOR inhibition and growth inhibition in cancer cells. Cancer Lett. 2015;358(2):170–9. https://doi.org/10.1016/j.canlet.2014.12.033.
Article CAS PubMed Google Scholar
Foltyn M, Luger A-L, Lorenz NI, Sauer B, Mittelbronn M, Harter PN, Steinbach JP, Ronellenfitsch MW. The physiological mTOR complex 1 inhibitor DDIT4 mediates therapy resistance in glioblastoma. Br J Cancer. 2019;120(5):481–7. https://doi.org/10.1038/s41416-018-0368-3.
Article PubMed PubMed Central Google Scholar
Du F, Sun L, Chu Y, Li T, Lei C, Wang X, Jiang M, Min Y, Lu Y, Zhao X, Nie Y, Fan D. DDIT4 promotes gastric cancer proliferation and tumorigenesis through the p53 and MAPK pathways. Cancer Commun (Lond). 2018;38(1):45–45. https://doi.org/10.1186/s40880-018-0315-y.
Jin HO, Hong SE, Kim JY, Kim MR, Chang YH, Hong YJ, Lee JK, Park IC. Induction of HSP27 and HSP70 by constitutive overexpression of Redd1 confers resistance of lung cancer cells to ionizing radiation. Oncol Rep. 2019;41(5):3119–26. https://doi.org/10.3892/or.2019.7036.
Article CAS PubMed Google Scholar
Fattahi F, Saeednejad Zanjani L, Habibi Shams Z, Kiani J, Mehrazma M, Najafi M, Madjd Z. High expression of DNA damage-inducible transcript 4 (DDIT4) is associated with advanced pathological features in the patients with colorectal cancer. Sci Rep. 2021;11(1):13626. https://doi.org/10.1038/s41598-021-92720-z.
Article CAS PubMed PubMed Central Google Scholar
Feng Y, Song K, Shang W, Chen L, Wang C, Pang B, Wang N. REDD1 overexpression in oral squamous cell carcinoma may predict poor prognosis and correlates with high microvessel density. Oncol Lett. 2020;19(1):431–41. https://doi.org/10.3892/ol.2019.11070.
Article CAS PubMed Google Scholar
Chang B, Meng J, Zhu H, Du X, Sun L, Wang L, Li S, Yang G. Overexpression of the recently identified oncogene REDD1 correlates with tumor progression and is an independent unfavorable prognostic factor for ovarian carcinoma. Diagn Pathol. 2018;13(1):87–87. https://doi.org/10.1186/s13000-018-0754-4.
Article CAS PubMed PubMed Central Google Scholar
Jia W, Chang B, Sun L, Zhu H, Pang L, Tao L, Zou H, Du J, Dong Y, Qi Y, Jiang J, Liang W, Li F, Zhao X. REDD1 and p-AKT over-expression may predict poor prognosis in ovarian cancer. Int J Clin Exp Pathol. 2014;7(9):5940–9.
CAS PubMed PubMed Central Google Scholar
Zeng Q, Liu J, Cao P, Li J, Liu X, Fan X, Liu L, Cheng Y, Xiong W, Li J, Bo H, Zhu Y, Yang F, Hu J, Zhou M, Zhou Y, Zou Q, Zhou J, Cao K. Inhibition of REDD1 Sensitizes Bladder Urothelial Carcinoma to Paclitaxel by Inhibiting Autophagy. Clin Cancer Res. 2018;24(2):445–59. https://doi.org/10.1158/1078-0432.CCR-17-0419.
Comments (0)