Bukavina L, Bensalah K, Bray F, et al. Epidemiology of renal cell carcinoma: 2022 update. Eur Urol. 2022;82:529–42. https://doi.org/10.1016/j.eururo.2022.08.019.
Motzer RJ, Jonasch E, Agarwal N, et al. NCCN Guidelines® Insights: kidney cancer, version 3.2024. J Natl Compr Canc Netw. 2024;22:4–16. https://doi.org/10.6004/jnccn.2024.0008.
Article CAS PubMed Google Scholar
Choueiri TK, Piotr T, Hoon PS, et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N Engl J Med. 2021;385:683–94. https://doi.org/10.1056/NEJMoa2106391.
Article CAS PubMed Google Scholar
Marchioni M, Amparore D, Marandino L, et al. Is adjuvant immunotherapy worth for all patients with clear-cell renal cell carcinoma at high risk of recurrence? Eur Urol Open Sci. 2022;46:39–42. https://doi.org/10.1016/j.euros.2022.10.002.
Article PubMed PubMed Central Google Scholar
Khene Z-E, Bex A, Bensalah K. Adjuvant therapy after surgical resection of nonmetastatic renal cell carcinoma: one size does not fit all. Eur Urol. 2022;81:432–3. https://doi.org/10.1016/j.eururo.2021.10.033.
Article CAS PubMed Google Scholar
Khene Z-E, Bhanvadia R, Tachibana I, et al. Prognostic models for predicting oncological outcomes after surgical resection of a nonmetastatic renal cancer: a critical review of current literature. Urol Oncol. 2024;S1078–1439(24):00631–8. https://doi.org/10.1016/j.urolonc.2024.08.014.
Xing J, Liu Y, Wang Z, et al. Incremental value of radiomics with machine learning to the existing prognostic models for predicting outcome in renal cell carcinoma. Front Oncol. 2023;13:1036734. https://doi.org/10.3389/fonc.2023.1036734.
Article PubMed PubMed Central Google Scholar
Deniffel D, McAlpine K, Harder FN, et al. Predicting the recurrence risk of renal cell carcinoma after nephrectomy: potential role of CT-radiomics for adjuvant treatment decisions. Eur Radiol. 2023;33:5840–50. https://doi.org/10.1007/s00330-023-09551-x.
Khene Z-E, Tachibana I, Bertail T, et al. Clinical application of radiomics for the prediction of treatment outcome and survival in patients with renal cell carcinoma: a systematic review. World J Urol. 2024;42:541. https://doi.org/10.1007/s00345-024-05247-z.
Nguyen K, Schieda N, James N, et al. Effect of phase of enhancement on texture analysis in renal masses evaluated with non-contrast-enhanced, corticomedullary, and nephrographic phase-enhanced CT images. Eur Radiol. 2021;31:1676–86. https://doi.org/10.1007/s00330-020-07233-6.
Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:203–11. https://doi.org/10.1038/s41592-020-01008-z.
Article CAS PubMed Google Scholar
Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295:328–38. https://doi.org/10.1148/radiol.2020191145.
Da-ano R, Masson I, Lucia F, et al. Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies. Sci Rep. 2020;10:10248. https://doi.org/10.1038/s41598-020-66110-w.
Article CAS PubMed PubMed Central Google Scholar
Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007;315:972–6. https://doi.org/10.1126/science.1136800.
Article CAS PubMed Google Scholar
Mueller-Lisse UG, Mueller-Lisse UL. Imaging of advanced renal cell carcinoma. World J Urol. 2010;28:253–61. https://doi.org/10.1007/s00345-010-0557-z.
Aerts HJWL. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2016;2:1636–42. https://doi.org/10.1001/jamaoncol.2016.2631.
Yan L, Yang G, Cui J, et al. Radiomics analysis of contrast-enhanced CT predicts survival in clear cell renal cell carcinoma. Front Oncol. 2021;11: 671420. https://doi.org/10.3389/fonc.2021.671420.
Article PubMed PubMed Central Google Scholar
Nie P, Yang G, Wang Y, et al. A CT-based deep learning radiomics nomogram outperforms the existing prognostic models for outcome prediction in clear cell renal cell carcinoma: a multicenter study. Eur Radiol. 2023;33:8858–68. https://doi.org/10.1007/s00330-023-09869-6.
Khene Z, Kokorian R, Mathieu R, et al. Metastatic clear cell renal cell carcinoma: computed tomography texture analysis as predictive biomarkers of survival in patients treated with nivolumab. Int J Clin Oncol. 2021;26:2087–93. https://doi.org/10.1007/s10147-021-02003-w.
Article CAS PubMed Google Scholar
Han D, Yu N, Yu Y, et al. Performance of CT radiomics in predicting the overall survival of patients with stage III clear cell renal carcinoma after radical nephrectomy. Radiol med. 2022;127:837–47. https://doi.org/10.1007/s11547-022-01526-0.
Nazari M, Shiri I, Zaidi H. Radiomics-based machine learning model to predict risk of death within 5-years in clear cell renal cell carcinoma patients. Comput Biol Med. 2021;129: 104135. https://doi.org/10.1016/j.compbiomed.2020.104135.
Jinzaki M, Tanimoto A, Mukai M, et al. Double-phase helical CT of small renal parenchymal neoplasms: correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr. 2000;24:835–42. https://doi.org/10.1097/00004728-200011000-00002.
Article CAS PubMed Google Scholar
Okegawa T, Morimoto M, Nishizawa S, et al. Intratumor heterogeneity in primary kidney cancer revealed by metabolic profiling of multiple spatially separated samples within tumors. EBioMedicine. 2017;19:31–8. https://doi.org/10.1016/j.ebiom.2017.04.009.
Article PubMed PubMed Central Google Scholar
Udayakumar D, Zhang Z, Xi Y, et al. Deciphering intratumoral molecular heterogeneity in clear cell renal cell carcinoma with a radiogenomics platform. Clin Cancer Res. 2021;27:4794–806. https://doi.org/10.1158/1078-0432.CCR-21-0706.
Article CAS PubMed PubMed Central Google Scholar
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. https://doi.org/10.1148/radiol.2015151169.
Comments (0)