Impact of contrast enhancement phase on CT-based radiomics analysis for predicting post-surgical recurrence in renal cell carcinoma

Bukavina L, Bensalah K, Bray F, et al. Epidemiology of renal cell carcinoma: 2022 update. Eur Urol. 2022;82:529–42. https://doi.org/10.1016/j.eururo.2022.08.019.

Article  PubMed  Google Scholar 

Motzer RJ, Jonasch E, Agarwal N, et al. NCCN Guidelines® Insights: kidney cancer, version 3.2024. J Natl Compr Canc Netw. 2024;22:4–16. https://doi.org/10.6004/jnccn.2024.0008.

Article  CAS  PubMed  Google Scholar 

Choueiri TK, Piotr T, Hoon PS, et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N Engl J Med. 2021;385:683–94. https://doi.org/10.1056/NEJMoa2106391.

Article  CAS  PubMed  Google Scholar 

Marchioni M, Amparore D, Marandino L, et al. Is adjuvant immunotherapy worth for all patients with clear-cell renal cell carcinoma at high risk of recurrence? Eur Urol Open Sci. 2022;46:39–42. https://doi.org/10.1016/j.euros.2022.10.002.

Article  PubMed  PubMed Central  Google Scholar 

Khene Z-E, Bex A, Bensalah K. Adjuvant therapy after surgical resection of nonmetastatic renal cell carcinoma: one size does not fit all. Eur Urol. 2022;81:432–3. https://doi.org/10.1016/j.eururo.2021.10.033.

Article  CAS  PubMed  Google Scholar 

Khene Z-E, Bhanvadia R, Tachibana I, et al. Prognostic models for predicting oncological outcomes after surgical resection of a nonmetastatic renal cancer: a critical review of current literature. Urol Oncol. 2024;S1078–1439(24):00631–8. https://doi.org/10.1016/j.urolonc.2024.08.014.

Article  Google Scholar 

Xing J, Liu Y, Wang Z, et al. Incremental value of radiomics with machine learning to the existing prognostic models for predicting outcome in renal cell carcinoma. Front Oncol. 2023;13:1036734. https://doi.org/10.3389/fonc.2023.1036734.

Article  PubMed  PubMed Central  Google Scholar 

Deniffel D, McAlpine K, Harder FN, et al. Predicting the recurrence risk of renal cell carcinoma after nephrectomy: potential role of CT-radiomics for adjuvant treatment decisions. Eur Radiol. 2023;33:5840–50. https://doi.org/10.1007/s00330-023-09551-x.

Article  PubMed  Google Scholar 

Khene Z-E, Tachibana I, Bertail T, et al. Clinical application of radiomics for the prediction of treatment outcome and survival in patients with renal cell carcinoma: a systematic review. World J Urol. 2024;42:541. https://doi.org/10.1007/s00345-024-05247-z.

Article  PubMed  Google Scholar 

Nguyen K, Schieda N, James N, et al. Effect of phase of enhancement on texture analysis in renal masses evaluated with non-contrast-enhanced, corticomedullary, and nephrographic phase-enhanced CT images. Eur Radiol. 2021;31:1676–86. https://doi.org/10.1007/s00330-020-07233-6.

Article  PubMed  Google Scholar 

Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:203–11. https://doi.org/10.1038/s41592-020-01008-z.

Article  CAS  PubMed  Google Scholar 

Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295:328–38. https://doi.org/10.1148/radiol.2020191145.

Article  PubMed  Google Scholar 

Da-ano R, Masson I, Lucia F, et al. Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies. Sci Rep. 2020;10:10248. https://doi.org/10.1038/s41598-020-66110-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007;315:972–6. https://doi.org/10.1126/science.1136800.

Article  CAS  PubMed  Google Scholar 

Mueller-Lisse UG, Mueller-Lisse UL. Imaging of advanced renal cell carcinoma. World J Urol. 2010;28:253–61. https://doi.org/10.1007/s00345-010-0557-z.

Article  PubMed  Google Scholar 

Aerts HJWL. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2016;2:1636–42. https://doi.org/10.1001/jamaoncol.2016.2631.

Article  PubMed  Google Scholar 

Yan L, Yang G, Cui J, et al. Radiomics analysis of contrast-enhanced CT predicts survival in clear cell renal cell carcinoma. Front Oncol. 2021;11: 671420. https://doi.org/10.3389/fonc.2021.671420.

Article  PubMed  PubMed Central  Google Scholar 

Nie P, Yang G, Wang Y, et al. A CT-based deep learning radiomics nomogram outperforms the existing prognostic models for outcome prediction in clear cell renal cell carcinoma: a multicenter study. Eur Radiol. 2023;33:8858–68. https://doi.org/10.1007/s00330-023-09869-6.

Article  PubMed  Google Scholar 

Khene Z, Kokorian R, Mathieu R, et al. Metastatic clear cell renal cell carcinoma: computed tomography texture analysis as predictive biomarkers of survival in patients treated with nivolumab. Int J Clin Oncol. 2021;26:2087–93. https://doi.org/10.1007/s10147-021-02003-w.

Article  CAS  PubMed  Google Scholar 

Han D, Yu N, Yu Y, et al. Performance of CT radiomics in predicting the overall survival of patients with stage III clear cell renal carcinoma after radical nephrectomy. Radiol med. 2022;127:837–47. https://doi.org/10.1007/s11547-022-01526-0.

Article  PubMed  Google Scholar 

Nazari M, Shiri I, Zaidi H. Radiomics-based machine learning model to predict risk of death within 5-years in clear cell renal cell carcinoma patients. Comput Biol Med. 2021;129: 104135. https://doi.org/10.1016/j.compbiomed.2020.104135.

Article  PubMed  Google Scholar 

Jinzaki M, Tanimoto A, Mukai M, et al. Double-phase helical CT of small renal parenchymal neoplasms: correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr. 2000;24:835–42. https://doi.org/10.1097/00004728-200011000-00002.

Article  CAS  PubMed  Google Scholar 

Okegawa T, Morimoto M, Nishizawa S, et al. Intratumor heterogeneity in primary kidney cancer revealed by metabolic profiling of multiple spatially separated samples within tumors. EBioMedicine. 2017;19:31–8. https://doi.org/10.1016/j.ebiom.2017.04.009.

Article  PubMed  PubMed Central  Google Scholar 

Udayakumar D, Zhang Z, Xi Y, et al. Deciphering intratumoral molecular heterogeneity in clear cell renal cell carcinoma with a radiogenomics platform. Clin Cancer Res. 2021;27:4794–806. https://doi.org/10.1158/1078-0432.CCR-21-0706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. https://doi.org/10.1148/radiol.2015151169.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif