Kerr, J. B., & Fioletov, V. E. (2008). Surface ultraviolet radiation. Atmosphere-Ocean, 46(1), 159–184. https://doi.org/10.3137/ao.460108
Bais, A. F., Tourpali, K., Kazantzidis, A., Akiyoshi, H., Bekki, S., Braesicke, P., Chipperfield, M. P., Dameris, M., Eyring, V., Garny, H., Iachetti, D., Jöckel, P., Kubin, A., Langematz, U., Mancini, E., Michou, M., Morgenstern, O., Nakamura, T., Newman, P. A., & Yamashita, Y. (2011). Projections of UV radiation changes in the 21st century: Impact of ozone recovery and cloud effects. Atmospheric Chemistry and Physics, 11(15), 7533–7545. https://doi.org/10.5194/acp-11-7533-2011
Bais, A. F., McKenzie, R. L., Bernhard, G., Aucamp, P. J., Ilyas, M., Madronich, S., & Tourpali, K. (2015). Ozone depletion and climate change: Impacts on UV radiation. Photochemical & Photobiological Sciences, 14(1), 19–52. https://doi.org/10.1039/c4pp90032d
Bais, A. F., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Young, P. J., Ilyas, M., Jöckel, P., & Deushi, M. (2019). Ozone—Climate interactions and effects on solar ultraviolet radiation. Photochemical & Photobiological Sciences, 18(3), 602–640. https://doi.org/10.1039/c8pp90059k
UNEP Environmental Effects Assessment Panel (EEAP). (2019). Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change. 2018 Assessment Report. Retrieved. https://ozone.unep.org/sites/default/files/2019-04/EEAP_assessment-report-2018%20%282%29.pdf. Accessed Jan 14 2024
World Meteorological Organization (WMO). (2018). Scientific assessment of ozone depletion: 2018. Global ozone research and monitoring project (no. report no. 58). https://ozone.unep.org/sites/default/files/2019-05/SAP-2018-Assessment-report.pdf. Accessed Jan 14 2024
Intergovernmental Panel on Climate Change (IPCC). (2022). Climate change 2022—Impacts, adaptation and vulnerability: Working group II contribution to the sixth assessment report of the intergovernmental panel on climate change (1st edition). Cambridge University Press. https://doi.org/10.1017/9781009325844
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., & Wang, R. H. J. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020
Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., & Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
Rowland, F. S. (2006). Stratospheric ozone depletion. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1469), 769–790. https://doi.org/10.1098/rstb.2005.1783
Zerefos, C., Meleti, C., Balis, D., Tourpali, K., & Bais, A. F. (1998). Quasi-biennial and longer-term changes in clear sky UV-B solar irradiance. Geophysical Research Letters, 25(23), 4345–4348. https://doi.org/10.1029/1998GL900160
Fountoulakis, I., Bais, A. F., Fragkos, K., Meleti, C., Tourpali, K., & Zempila, M. M. (2016). Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: Effects of changes in aerosols, total ozone and clouds. Atmospheric Chemistry and Physics, 16(4), 2493–2505. https://doi.org/10.5194/acp-16-2493-2016
Tourpali, K., Bais, A. F., Kazantzidis, A., Zerefos, C. S., Akiyoshi, H., Austin, J., Brühl, C., Butchart, N., Chipperfield, M. P., Dameris, M., Deushi, M., Eyring, V., Giorgetta, M. A., Kinnison, D. E., Mancini, E., Marsh, D. R., Nagashima, T., Pitari, G., Plummer, D. A., & Tian, W. (2009). Clear sky UV simulations for the 21st century based on ozone and temperature projections from chemistry-climate models. Atmospheric Chemistry and Physics, 9(4), 1165–1172. https://doi.org/10.5194/acp-9-1165-2009
World Meteorological Organization (WMO). (2011). scientific assessment of ozone depletion: 2010. Global ozone research and monitoring project. https://ozone.unep.org/sites/default/files/2019-05/00-SAP-2010-Assement-report.pdf. Accessed Jan 17 2024
Morgenstern, O., Braesicke, P., Hurwitz, M. M., O’Connor, F. M., Bushell, A. C., Johnson, C. E., & Pyle, J. A. (2008). The world avoided by the montreal protocol. Geophysical Research Letters, 35(16), 2008GL034590. https://doi.org/10.1029/2008GL034590
World Meteorological Organization (WMO). (2022). Scientific assessment of ozone depletion: 2022 (no. GAW report no. 278). https://ozone.unep.org/sites/default/files/2023-02/Scientific-Assessment-of-Ozone-Depletion-2022.pdf. Accessed Jan 18 2024
Braesicke, P., Neu, J., Fioletov, V., Godin-Beekmann, S., Hubert, D., Petropavlovskikh, I., Shiotani, M., & Sinnhuber, B.-M. (2019). Chapter 3: Update on global ozone: Past, present, and future. Scientific assessment of ozone depletion: 2018, (no. project–report no. 58; global ozone research and monitoring). World Meteorological Organization (WMO).
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Skeie, R. B., Myhre, G., Hodnebrog, Ø., Cameron-Smith, P. J., Deushi, M., Hegglin, M. I., Horowitz, L. W., Kramer, R. J., Michou, M., Mills, M. J., Olivié, D. J. L., Connor, F. M. O., Paynter, D., Samset, B. H., Sellar, A., Shindell, D., Takemura, T., Tilmes, S., & Wu, T. (2020). Historical total ozone radiative forcing derived from CMIP6 simulations. Npj Climate and Atmospheric Science, 3(1), 32. https://doi.org/10.1038/s41612-020-00131-0
Yamamoto, A. L. C., Corrêa, M. D. P., Torres, R. R., Martins, F. B., & Godin-Beekmann, S. (2024). Total ozone content, total cloud cover, and aerosol optical depth in CMIP6: Simulations performance and projected changes. Theoretical and Applied Climatology, 155(3), 2453–2471. https://doi.org/10.1007/s00704-023-04821-6
Santee, M. L., Lambert, A., Froidevaux, L., Manney, G. L., Schwartz, M. J., Millán, L. F., Livesey, N. J., Read, W. G., Werner, F., & Fuller, R. A. (2023). Strong evidence of heterogeneous processing on stratospheric sulfate aerosol in the extrapolar southern hemisphere following the 2022 Hunga Tonga–Hunga Ha’apai Eruption. Journal of Geophysical Research: Atmospheres, 128(16), e2023JD039169. https://doi.org/10.1029/2023JD039169
Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tencé, F., Bekki, S., Bourassa, A., Rieger, L., Zawada, D., Jumelet, J., & Godin-Beekmann, S. (2020). The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Communications Earth & Environment, 1(1), 22. https://doi.org/10.1038/s43247-020-00022-5
Salawitch, R. J., & McBride, L. A. (2022). Australian wildfires depleted the ozone layer. Science, 378(6622), 829–830. https://doi.org/10.1126/science.add2056
Article CAS PubMed Google Scholar
Ryan, R. G., Marais, E. A., Balhatchet, C. J., & Eastham, S. D. (2022). Impact of rocket launch and space debris air pollutant emissions on stratospheric ozone and global climate. Earth’s Future, 10(6), e2021EF002612. https://doi.org/10.1029/2021EF002612
Article CAS PubMed PubMed Central Google Scholar
Madronich, S., Shao, M., Wilson, S. R., Solomon, K. R., Longstreth, J. D., & Tang, X. Y. (2015). Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: Implications for human and environmental health. Photochemical & Photobiological Sciences, 14(1), 149–169. https://doi.org/10.1039/c4pp90037e
Boucher, O., Randall, D., Artaxo, C., Bretherton, G., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., & Zhang, X. Y. (2013). Clouds and Aerosols. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (IPCC). https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter07_FINAL-1.pdf. Accessed Jan 14 2024
Intergovernmental Panel on Climate Change (IPCC). (2021). Climate change 2021—The physical science basis: Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change (1st ed.). https://doi.org/10.1017/9781009157896
Bellouin, N., Davies, W., Shine, K. P., Quaas, J., Mülmenstädt, J., Forster, P. M., Smith, C., Lee, L., Regayre, L., Brasseur, G., Sudarchikova, N., Bouarar, I., Boucher, O., & Myhre, G. (2020). Radiative forcing of climate change from the Copernicus reanalysis of atmospheric composition. Earth System Science Data, 12(3), 1649–1677. https://doi.org/10.5194/essd-12-1649-2020
Rémy, S., Bellouin, N., Kipling, Z., Ades, M., Benedetti, A., & Boucher, O. (2019). Aerosols. In: State of the climate in 2018.
Mortier, A., Gliß, J., Schulz, M., Aas, W., Andrews, E., Bian, H., Chin, M., Ginoux, P., Hand, J., Holben, B., Zhang, H., Kipling, Z., Kirkevåg, A., Laj, P., Lurton, T., Myhre, G., Neubauer, D., Olivié, D., Von Salzen, K., & Tilmes, S. (2020). Evaluation of climate model aerosol trends with ground-based observations over the last 2 decades—an AeroCom and CMIP6 analysis. Atmospheric Chemistry and Physics, 20(21), 13355–13378. https://doi.org/10.5194/acp-20-13355-2020
Rao, S., Klimont, Z., Smith, S. J., Van Dingenen, R., Dentener, F., Bouwman, L., Riahi, K., Amann, M., Bodirsky, B. L., Van Vuuren, D. P., Aleluia Reis, L., Calvin, K., Drouet, L., Fricko, O., Fujimori, S., Gernaat, D., Havlik, P., Harmsen, M., Hasegawa, T., & Tavoni, M. (2017). Future air pollution in the shared socio-economic pathways. Global Environmental Change, 42, 346–358. https://doi.org/10.1016/j.gloenvcha.2016.05.012
Zhao, A., Ryder, C. L., & Wilcox, L. J. (2022). How well do the CMIP6 models simulate dust aerosols? Atmospheric Chemistry and Physics, 22(3), 2095–2119. https://doi.org/10.5194/acp-22-2095-2022
Yang, F., Mitchell, K., Hou, Y.-T., Dai, Y., Zeng, X., Wang, Z., & Liang, X.-Z. (2008). Dependence of land surface albedo on solar zenith angle: observations and model parameterization. Journal of Applied Meteorology and Climatology, 47(11), 2963–2982. https://doi.org/10.1175/2008JAMC1843.1
Rutan, D. A., Smith, G. L., & Wong, T. (2014). Diurnal variations of albedo retrieved from earth radiation budget experiment measurements. Journal of Applied Meteorology and Climatology, 53(12), 2747–2760. https://doi.org/10.1175/JAMC-D-13-0119.1
Intergovernmental Panel on Climate Change (IPCC). (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf. Accessed Jan 25 2024
Stuhlmann, R., & Smith, G. L. (1989). A study on cloud-radiation interaction. Advances in Space Research, 9(7), 63–73. https://doi.org/10.1016/0273-1177(89)90145-2
Harrop, B. E., & Hartmann, D. L. (2016). The role of cloud radiative heating within the atmosphere on the high cloud amount and top-of-atmosphere cloud radiative effect. Journal of Advances in Modeling Earth Systems, 8(3), 1391–1410. htt
Comments (0)