Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction

Bailey, J. (1998). Circular polarization in star- formation regions: Implications for biomolecular homochirality. Science, 281(5377), 672–674. https://doi.org/10.1126/science.281.5377.672

Article  PubMed  Google Scholar 

Yang, Y., Da Costa, R. C., Fuchter, M. J., & Campbell, A. J. (2013). Circularly polarized light detection by a chiral organic semiconductor transistor. Nature Photonics, 7(8), 634–638. https://doi.org/10.1038/nphoton.2013.176

Article  CAS  Google Scholar 

Zinna, F., Giovanella, U., & Bari, L. D. (2015). Highly circularly polarized electroluminescence from a Chiral Europium Complex. Advanced Materials, 27(10), 1791–1795. https://doi.org/10.1002/adma.201404891

Article  CAS  PubMed  Google Scholar 

Fukushima, K., Kharzeev, D. E., & Warringa, H. J. (2008). Chiral magnetic effect. Physical Review D. https://doi.org/10.1103/PhysRevD.78.074033

Article  Google Scholar 

Inoue, Y., Tsuneishi, H., Hakushi, T., Yagi, K., Awazu, K., & Onuki, H. (1996). First absolute asymmetric synthesis with circularly polarized synchrotron radiation in the vacuum ultraviolet region: Direct photoderacemization of (E)-cyclooctene. Chemical Communications, 23, 2627–2628. https://doi.org/10.1039/cc9960002627

Article  Google Scholar 

Kuhn, A., & Fischer, P. (2009). Absolute asymmetric reduction based on the relative orientation of achiral reactants. Angewandte Chemie International Edition, 48(37), 6857–6860. https://doi.org/10.1002/anie.200902841

Article  CAS  PubMed  Google Scholar 

Hendry, E., Mikhaylovskiy, R. V., Barron, L. D., Kadodwala, M., & Davis, T. J. (2012). Chiral electromagnetic fields generated by arrays of nanoslits. Nano Letters, 12(7), 3640–3644. https://doi.org/10.1021/nl3012787

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H. E., Ahn, H. Y., Mun, J., Lee, Y. Y., Kim, M., Cho, N. H., Chang, K., Kim, W. S., Rho, J., & Nam, K. T. (2018). Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature, 556(7701), 360–365. https://doi.org/10.1038/s41586-018-0034-1

Article  CAS  PubMed  Google Scholar 

Paterson, G. W., Karimullah, A. S., Smith, S. G., Kadodwala, M., & Maclaren, D. A. (2018). Symmetry reduction and shape effects in concave chiral plasmonic structures. Journal of Physical Chemistry C, 122(9), 5049–5056. https://doi.org/10.1021/acs.jpcc.7b12260

Article  CAS  Google Scholar 

Zu, S., Sun, Q., Cao, E., Oshikiri, T., & Misawa, H. (2021). Revealing the chiroptical response of plasmonic nanostructures at the nanofemto scale. Nano Letters, 21(11), 4780–4786. https://doi.org/10.1021/acs.nanolett.1c01322

Article  CAS  PubMed  Google Scholar 

Hashiyada, S., Narushima, T., & Okamoto, H. (2014). Local optical activity in achiral two-dimensional gold nanostructures. Journal of Physical Chemistry C, 118(38), 22229–22233. https://doi.org/10.1021/jp507168a

Article  CAS  Google Scholar 

Arikawa, T., Hiraoka, T., Morimoto, S., Blanchard, F., Tani, S., Tanaka, T., Sakai, K., Kitajima, H., Sasaki, K., & Tanaka, K. (2020). Transfer of orbital angular momentum of light to plasmonic excitations in metamaterials. Science Advances, 6(24), eaay1977. https://doi.org/10.1126/sciadv.aay1977

Article  CAS  PubMed  PubMed Central  Google Scholar 

Movsesyan, A., Muravitskaya, A., Besteiro, L. V., Santiago, E. Y., Ávalos-Ovando, O., Correa-Duarte, M. A., Wang, Z., Markovich, G., & Govorov, A. O. (2023). Creating chiral plasmonic nanostructures using chiral light in a solution and on a substrate: the near-field and hot-electron routes. Advanced Optical Materials. https://doi.org/10.1002/adom.202300013

Article  Google Scholar 

Zu, S., Bao, Y., & Fang, Z. (2016). Planar plasmonic chiral nanostructures. Nanoscale, 8(7), 3900–3905. https://doi.org/10.1039/c5nr09302c

Article  CAS  PubMed  Google Scholar 

Wang, F., & Harutyunyan, H. (2019). Observation of a giant nonlinear chiro-optical response in planar plasmonic-photonic metasurfaces. Adv. Opt. Mater., 7(19), 1900744. https://doi.org/10.1002/adom.201900744

Article  CAS  Google Scholar 

Wu, A. A., Tanaka, Y. Y., & Shimura, T. (2021). Giant chiroptical response of twisted metal nanorods due to strong plasmon coupling. APL Photonics, 6(12), 126104. https://doi.org/10.1063/5.0069371

Article  CAS  Google Scholar 

Liu, Y.-E., Shi, X., Yokoyama, T., Inoue, S., Sunaba, Y., Oshikiri, T., Sun, Q., Tamura, M., Ishihara, H., Sasaki, K., & Misawa, H. (2023). Quantum-coherence-enhanced hot-electron injection under modal strong coupling. ACS Nano, 17(9), 8315–8323. https://doi.org/10.1021/acsnano.2c12670

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suganami, Y., Oshikiri, T., Mitomo, H., Sasaki, K., Liu, Y.-E., Shi, X., Matsuo, Y., Ijiro, K., & Misawa, H. (2024). Spatially uniform and quantitative surface-enhanced raman scattering under modal ultrastrong coupling beyond nanostructure homogeneity limits. ACS Nano, 18(6), 4993–5002. https://doi.org/10.1021/acsnano.3c10959

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical Review B, 6(12), 4370–4379. https://doi.org/10.1103/physrevb.6.4370

Article  CAS  Google Scholar 

Ueno, K., Juodkazis, S., Shibuya, T., Yokota, Y., Mizeikis, V., Sasaki, K., & Misawa, H. (2008). Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. Journal of the American Chemical Society, 130(22), 6928–6929. https://doi.org/10.1021/ja801262r

Article  CAS  PubMed  Google Scholar 

Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S., & Nori, F. (2019). Ultrastrong coupling between light and matter. Nat. Rev. Phys., 1(1), 19–40. https://doi.org/10.1038/s42254-018-0006-2

Article  Google Scholar 

Xiao, T.-H., Cheng, Z., Luo, Z., Isozaki, A., Hiramatsu, K., Itoh, T., Nomura, M., Iwamoto, S., & Goda, K. (2021). All-dielectric chiral-field-enhanced raman optical activity. Nature Communications, 12(1), 3062. https://doi.org/10.1038/s41467-021-23364-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, W., Coppens, Z. J., Besteiro, L. V., Wang, W., Govorov, A. O., & Valentine, J. (2015). Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nature Communications, 6(1), 8379. https://doi.org/10.1038/ncomms9379

Article  CAS  PubMed  Google Scholar 

Cai, J., Zhang, W., Xu, L., Hao, C., Ma, W., Sun, M., Wu, X., Qin, X., Colombari, F. M., De Moura, A. F., Xu, J., Silva, M. C., Carneiro-Neto, E. B., Gomes, W. R., Vallée, R. A. L., Pereira, E. C., Liu, X., Xu, C., Klajn, R., … Kuang, H. (2022). Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology, 17(4), 408–416. https://doi.org/10.1038/s41565-022-01079-3

Article  CAS  PubMed  Google Scholar 

Niinomi, H., Sugiyama, T., Cheng, A.-C., Tagawa, M., Ujihara, T., Yoshikawa, H. Y., Kawamura, R., Nozawa, J., Okada, J. T., & Uda, S. (2021). Chiral optical force generated by a superchiral near-field of a plasmonic triangle trimer as origin of giant bias in chiral nucleation: a simulation study. Journal of Physical Chemistry C, 125(11), 6209–6221. https://doi.org/10.1021/acs.jpcc.0c11109

Article  CAS  Google Scholar 

Niinomi, H., Gotoh, K., Takano, N., Tagawa, M., Morita, I., Onuma, A., Yoshikawa, H. Y., Kawamura, R., Oshikiri, T., & Nakagawa, M. (2024). Mie-resonant nanophotonic-enhancement of asymmetry in sodium chlorate chiral crystallization. Journal of Physical Chemistry Letters, 15(6), 1564–1571. https://doi.org/10.1021/acs.jpclett.3c03303

Article  CAS  PubMed  Google Scholar 

Cheng, A.-C., Pin, C., Sugiyama, T., & Sasaki, K. (2024). Enantioselectivity in chiral crystallization driven by the canonical and spin momentum forces of optical vortex beams. Journal of Physical Chemistry C, 128(10), 4314–4320. https://doi.org/10.1021/acs.jpcc.3c08424

Article  CAS  Google Scholar 

Naaman, R., & Waldeck, D. H. (2012). Chiral-induced spin selectivity effect. Journal of Physical Chemistry Letters, 3(16), 2178–2187. https://doi.org/10.1021/jz300793y

Article  CAS  PubMed  Google Scholar 

Oshikiri, T., Sun, Q., Yamada, H., Zu, S., Sasaki, K., & Misawa, H. (2021). Extrinsic chirality by interference between two plasmonic modes on an achiral rectangular nanostructure. ACS Nano, 15(10), 16802–16810. https://doi.org/10.1021/acsnano.1c07137

Comments (0)

No login
gif