Bailey, J. (1998). Circular polarization in star- formation regions: Implications for biomolecular homochirality. Science, 281(5377), 672–674. https://doi.org/10.1126/science.281.5377.672
Yang, Y., Da Costa, R. C., Fuchter, M. J., & Campbell, A. J. (2013). Circularly polarized light detection by a chiral organic semiconductor transistor. Nature Photonics, 7(8), 634–638. https://doi.org/10.1038/nphoton.2013.176
Zinna, F., Giovanella, U., & Bari, L. D. (2015). Highly circularly polarized electroluminescence from a Chiral Europium Complex. Advanced Materials, 27(10), 1791–1795. https://doi.org/10.1002/adma.201404891
Article CAS PubMed Google Scholar
Fukushima, K., Kharzeev, D. E., & Warringa, H. J. (2008). Chiral magnetic effect. Physical Review D. https://doi.org/10.1103/PhysRevD.78.074033
Inoue, Y., Tsuneishi, H., Hakushi, T., Yagi, K., Awazu, K., & Onuki, H. (1996). First absolute asymmetric synthesis with circularly polarized synchrotron radiation in the vacuum ultraviolet region: Direct photoderacemization of (E)-cyclooctene. Chemical Communications, 23, 2627–2628. https://doi.org/10.1039/cc9960002627
Kuhn, A., & Fischer, P. (2009). Absolute asymmetric reduction based on the relative orientation of achiral reactants. Angewandte Chemie International Edition, 48(37), 6857–6860. https://doi.org/10.1002/anie.200902841
Article CAS PubMed Google Scholar
Hendry, E., Mikhaylovskiy, R. V., Barron, L. D., Kadodwala, M., & Davis, T. J. (2012). Chiral electromagnetic fields generated by arrays of nanoslits. Nano Letters, 12(7), 3640–3644. https://doi.org/10.1021/nl3012787
Article CAS PubMed PubMed Central Google Scholar
Lee, H. E., Ahn, H. Y., Mun, J., Lee, Y. Y., Kim, M., Cho, N. H., Chang, K., Kim, W. S., Rho, J., & Nam, K. T. (2018). Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature, 556(7701), 360–365. https://doi.org/10.1038/s41586-018-0034-1
Article CAS PubMed Google Scholar
Paterson, G. W., Karimullah, A. S., Smith, S. G., Kadodwala, M., & Maclaren, D. A. (2018). Symmetry reduction and shape effects in concave chiral plasmonic structures. Journal of Physical Chemistry C, 122(9), 5049–5056. https://doi.org/10.1021/acs.jpcc.7b12260
Zu, S., Sun, Q., Cao, E., Oshikiri, T., & Misawa, H. (2021). Revealing the chiroptical response of plasmonic nanostructures at the nanofemto scale. Nano Letters, 21(11), 4780–4786. https://doi.org/10.1021/acs.nanolett.1c01322
Article CAS PubMed Google Scholar
Hashiyada, S., Narushima, T., & Okamoto, H. (2014). Local optical activity in achiral two-dimensional gold nanostructures. Journal of Physical Chemistry C, 118(38), 22229–22233. https://doi.org/10.1021/jp507168a
Arikawa, T., Hiraoka, T., Morimoto, S., Blanchard, F., Tani, S., Tanaka, T., Sakai, K., Kitajima, H., Sasaki, K., & Tanaka, K. (2020). Transfer of orbital angular momentum of light to plasmonic excitations in metamaterials. Science Advances, 6(24), eaay1977. https://doi.org/10.1126/sciadv.aay1977
Article CAS PubMed PubMed Central Google Scholar
Movsesyan, A., Muravitskaya, A., Besteiro, L. V., Santiago, E. Y., Ávalos-Ovando, O., Correa-Duarte, M. A., Wang, Z., Markovich, G., & Govorov, A. O. (2023). Creating chiral plasmonic nanostructures using chiral light in a solution and on a substrate: the near-field and hot-electron routes. Advanced Optical Materials. https://doi.org/10.1002/adom.202300013
Zu, S., Bao, Y., & Fang, Z. (2016). Planar plasmonic chiral nanostructures. Nanoscale, 8(7), 3900–3905. https://doi.org/10.1039/c5nr09302c
Article CAS PubMed Google Scholar
Wang, F., & Harutyunyan, H. (2019). Observation of a giant nonlinear chiro-optical response in planar plasmonic-photonic metasurfaces. Adv. Opt. Mater., 7(19), 1900744. https://doi.org/10.1002/adom.201900744
Wu, A. A., Tanaka, Y. Y., & Shimura, T. (2021). Giant chiroptical response of twisted metal nanorods due to strong plasmon coupling. APL Photonics, 6(12), 126104. https://doi.org/10.1063/5.0069371
Liu, Y.-E., Shi, X., Yokoyama, T., Inoue, S., Sunaba, Y., Oshikiri, T., Sun, Q., Tamura, M., Ishihara, H., Sasaki, K., & Misawa, H. (2023). Quantum-coherence-enhanced hot-electron injection under modal strong coupling. ACS Nano, 17(9), 8315–8323. https://doi.org/10.1021/acsnano.2c12670
Article CAS PubMed PubMed Central Google Scholar
Suganami, Y., Oshikiri, T., Mitomo, H., Sasaki, K., Liu, Y.-E., Shi, X., Matsuo, Y., Ijiro, K., & Misawa, H. (2024). Spatially uniform and quantitative surface-enhanced raman scattering under modal ultrastrong coupling beyond nanostructure homogeneity limits. ACS Nano, 18(6), 4993–5002. https://doi.org/10.1021/acsnano.3c10959
Article CAS PubMed PubMed Central Google Scholar
Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical Review B, 6(12), 4370–4379. https://doi.org/10.1103/physrevb.6.4370
Ueno, K., Juodkazis, S., Shibuya, T., Yokota, Y., Mizeikis, V., Sasaki, K., & Misawa, H. (2008). Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. Journal of the American Chemical Society, 130(22), 6928–6929. https://doi.org/10.1021/ja801262r
Article CAS PubMed Google Scholar
Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S., & Nori, F. (2019). Ultrastrong coupling between light and matter. Nat. Rev. Phys., 1(1), 19–40. https://doi.org/10.1038/s42254-018-0006-2
Xiao, T.-H., Cheng, Z., Luo, Z., Isozaki, A., Hiramatsu, K., Itoh, T., Nomura, M., Iwamoto, S., & Goda, K. (2021). All-dielectric chiral-field-enhanced raman optical activity. Nature Communications, 12(1), 3062. https://doi.org/10.1038/s41467-021-23364-w
Article CAS PubMed PubMed Central Google Scholar
Li, W., Coppens, Z. J., Besteiro, L. V., Wang, W., Govorov, A. O., & Valentine, J. (2015). Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nature Communications, 6(1), 8379. https://doi.org/10.1038/ncomms9379
Article CAS PubMed Google Scholar
Cai, J., Zhang, W., Xu, L., Hao, C., Ma, W., Sun, M., Wu, X., Qin, X., Colombari, F. M., De Moura, A. F., Xu, J., Silva, M. C., Carneiro-Neto, E. B., Gomes, W. R., Vallée, R. A. L., Pereira, E. C., Liu, X., Xu, C., Klajn, R., … Kuang, H. (2022). Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nature Nanotechnology, 17(4), 408–416. https://doi.org/10.1038/s41565-022-01079-3
Article CAS PubMed Google Scholar
Niinomi, H., Sugiyama, T., Cheng, A.-C., Tagawa, M., Ujihara, T., Yoshikawa, H. Y., Kawamura, R., Nozawa, J., Okada, J. T., & Uda, S. (2021). Chiral optical force generated by a superchiral near-field of a plasmonic triangle trimer as origin of giant bias in chiral nucleation: a simulation study. Journal of Physical Chemistry C, 125(11), 6209–6221. https://doi.org/10.1021/acs.jpcc.0c11109
Niinomi, H., Gotoh, K., Takano, N., Tagawa, M., Morita, I., Onuma, A., Yoshikawa, H. Y., Kawamura, R., Oshikiri, T., & Nakagawa, M. (2024). Mie-resonant nanophotonic-enhancement of asymmetry in sodium chlorate chiral crystallization. Journal of Physical Chemistry Letters, 15(6), 1564–1571. https://doi.org/10.1021/acs.jpclett.3c03303
Article CAS PubMed Google Scholar
Cheng, A.-C., Pin, C., Sugiyama, T., & Sasaki, K. (2024). Enantioselectivity in chiral crystallization driven by the canonical and spin momentum forces of optical vortex beams. Journal of Physical Chemistry C, 128(10), 4314–4320. https://doi.org/10.1021/acs.jpcc.3c08424
Naaman, R., & Waldeck, D. H. (2012). Chiral-induced spin selectivity effect. Journal of Physical Chemistry Letters, 3(16), 2178–2187. https://doi.org/10.1021/jz300793y
Article CAS PubMed Google Scholar
Oshikiri, T., Sun, Q., Yamada, H., Zu, S., Sasaki, K., & Misawa, H. (2021). Extrinsic chirality by interference between two plasmonic modes on an achiral rectangular nanostructure. ACS Nano, 15(10), 16802–16810. https://doi.org/10.1021/acsnano.1c07137
Comments (0)