Unveiling neurogenic biomarkers for the differentiation between sepsis patients with or without encephalopathy: an updated meta-analysis

Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock. Lancet (London, England). 2018;392(10141):75–87. https://doi.org/10.1016/s0140-6736(18)30696-2[publishedOnlineFirst:2018/06/26].

Article  PubMed  Google Scholar 

Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10. https://doi.org/10.1001/jama.2016.0287[publishedOnlineFirst:2016/02/24].

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sonneville R, de Montmollin E, Poujade J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 2017;43(8):1075–84. https://doi.org/10.1007/s00134-017-4807-z[publishedOnlineFirst:2017/05/04].

Article  PubMed  Google Scholar 

Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8(10):557–66. https://doi.org/10.1038/nrneurol.2012.183[publishedOnlineFirst:2012/09/19].

Article  CAS  PubMed  Google Scholar 

Khalil M, Teunissen CE, Lehmann S, et al. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol. 2024;20(5):269–87. https://doi.org/10.1038/s41582-024-00955-x[publishedOnlineFirst:2024/04/13].

Article  PubMed  Google Scholar 

Wilson DM 3rd, Cookson MR, Van Den Bosch L, et al. Hallmarks of neurodegenerative diseases. Cell. 2023;186(4):693–714. https://doi.org/10.1016/j.cell.2022.12.032[publishedOnlineFirst:2023/02/22].

Article  CAS  PubMed  Google Scholar 

Pierrakos C, Velissaris D, Bisdorff M, et al. Biomarkers of sepsis: time for a reappraisal. Crit Care. 2020;24(1):287. https://doi.org/10.1186/s13054-020-02993-5[publishedOnlineFirst:2020/06/07].

Article  PubMed  PubMed Central  Google Scholar 

Barichello T, Generoso JS, Singer M, et al. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care. 2022;26(1):14. https://doi.org/10.1186/s13054-021-03862-5[publishedOnlineFirst:2022/01/08].

Article  PubMed  PubMed Central  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed). 2021;372: n71. https://doi.org/10.1136/bmj.n71[publishedOnlineFirst:2021/03/31].

Article  PubMed  Google Scholar 

Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. https://doi.org/10.1186/1471-2288-5-13[publishedOnlineFirst:2005/04/21].

Article  PubMed  PubMed Central  Google Scholar 

Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. https://doi.org/10.1186/1471-2288-14-135[publishedOnlineFirst:2014/12/20].

Article  PubMed  PubMed Central  Google Scholar 

Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed). 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557[publishedOnlineFirst:2003/09/06].

Article  PubMed  Google Scholar 

Orhun G, Tüzün E, Özcan PE, et al. Association Between Inflammatory Markers and Cognitive Outcome in Patients with Acute Brain Dysfunction Due to Sepsis. Noro psikiyatri arsivi. 2019;56(1):63–70. https://doi.org/10.29399/npa.23212[publishedOnlineFirst:2019/03/27].

Article  PubMed  Google Scholar 

Weigand MA, Volkmann M, Schmidt H, et al. Neuron-specific enolase as a marker of fatal outcome in patients with severe sepsis or septic shock. Anesthesiology. 2000;92(3):905–7. https://doi.org/10.1097/00000542-200003000-00057.

Article  CAS  PubMed  Google Scholar 

Zhang LT, Xu X, Han H, et al. The value of NSE to predict ICU mortality in patients with septic shock: A prospective observational study. Medicine. 2022;101(40): e30941. https://doi.org/10.1097/md.0000000000030941[publishedOnlineFirst:2022/10/13].

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Q, Wu L, Ai YH, et al. The diagnostic value of neuron-specific enolase, central nervous system specific protein and interleukin-6 in sepsis-associated encephalopathy. Zhonghua Nei Ke Za Zhi. 2017;56(10):747–51. https://doi.org/10.3760/cma.j.issn.0578-1426.2017.10.008[publishedOnlineFirst:2017/10/19].

Article  CAS  PubMed  Google Scholar 

Guo W, Li Y, Li Q. Relationship between miR-29a levels in the peripheral blood and sepsis-related encephalopathy. American Journal of Translational Research. 2021;13(7):7715–22.

CAS  PubMed  PubMed Central  Google Scholar 

Wu L, Feng Q, Ai ML, et al. The dynamic change of serum S100B levels from day 1 to day 3 is more associated with sepsis-associated encephalopathy. Sci Rep. 2020;10(1):7718. https://doi.org/10.1038/s41598-020-64200-3[publishedOnlineFirst:2020/05/10].

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan S, Gao M, Chen H, et al. Expression level of glial fibrillary acidic protein and its clinical significance in patients with sepsis-associated encephalopathy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019;44(10):1137–42. https://doi.org/10.11817/j.issn.1672-7347.2019.190180[publishedOnlineFirst:2019/12/21].

Article  PubMed  Google Scholar 

Yao B, Zhang LN, Ai YH, et al. Serum S100β is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: a prospective and observational study. Neurochem Res. 2014;39(7):1263–9. https://doi.org/10.1007/s11064-014-1308-0[publishedOnlineFirst:2014/04/25].

Article  CAS  PubMed  Google Scholar 

Zhang LN, Wang XH, Wu L, et al. Diagnostic and Predictive Levels of Calcium-binding Protein A8 and Tumor Necrosis Factor Receptor-associated Factor 6 in Sepsis-associated Encephalopathy: A Prospective Observational Study. Chin Med J (Engl). 2016;129(14):1674–81. https://doi.org/10.4103/0366-6999.185860[publishedOnlineFirst:2016/07/15].

Article  CAS  PubMed  Google Scholar 

Li XL, Xie JF, Ye XY, et al. Value of cerebral hypoxic-ischemic injury markers in the early diagnosis of sepsis associated encephalopathy in burn patients with sepsis. Zhonghua Shao Shang Za Zhi. 2022;38(1):21–8. https://doi.org/10.3760/cma.j.cn501120-20211006-00346[publishedOnlineFirst:2022/02/15].

Article  CAS  Google Scholar 

Lu CX, Qiu T, Tong HS, et al. Peripheral T-lymphocyte and natural killer cell population imbalance is associated with septic encephalopathy in patients with severe sepsis. Exp Ther Med. 2016;11(3):1077–84. https://doi.org/10.3892/etm.2016.3000[publishedOnlineFirst:2016/03/22].

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen DN, Huyghens L, Zhang H, et al. Cortisol is an associated-risk factor of brain dysfunction in patients with severe sepsis and septic shock. Biomed Res Int. 2014;2014: 712742. https://doi.org/10.1155/2014/712742[publishedOnlineFirst:2014/06/03].

Article  PubMed  PubMed Central  Google Scholar 

Erikson K, Ala-Kokko TI, Koskenkari J, et al. Elevated serum S-100 beta in patients with septic shock is associated with delirium. Acta Anaesth Scand. 2019;63(1):69–73. https://doi.org/10.1111/aas.13228.

Article  CAS  PubMed  Google Scholar 

Wu L, Ai ML, Feng Q, et al. Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication. J Crit Care. 2019;52:172–9. https://doi.org/10.1016/j.jcrc.2019.04.018[publishedOnlineFirst:2019/05/13].

Article 

Comments (0)

No login
gif