Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock. Lancet (London, England). 2018;392(10141):75–87. https://doi.org/10.1016/s0140-6736(18)30696-2[publishedOnlineFirst:2018/06/26].
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10. https://doi.org/10.1001/jama.2016.0287[publishedOnlineFirst:2016/02/24].
Article CAS PubMed PubMed Central Google Scholar
Sonneville R, de Montmollin E, Poujade J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 2017;43(8):1075–84. https://doi.org/10.1007/s00134-017-4807-z[publishedOnlineFirst:2017/05/04].
Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8(10):557–66. https://doi.org/10.1038/nrneurol.2012.183[publishedOnlineFirst:2012/09/19].
Article CAS PubMed Google Scholar
Khalil M, Teunissen CE, Lehmann S, et al. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol. 2024;20(5):269–87. https://doi.org/10.1038/s41582-024-00955-x[publishedOnlineFirst:2024/04/13].
Wilson DM 3rd, Cookson MR, Van Den Bosch L, et al. Hallmarks of neurodegenerative diseases. Cell. 2023;186(4):693–714. https://doi.org/10.1016/j.cell.2022.12.032[publishedOnlineFirst:2023/02/22].
Article CAS PubMed Google Scholar
Pierrakos C, Velissaris D, Bisdorff M, et al. Biomarkers of sepsis: time for a reappraisal. Crit Care. 2020;24(1):287. https://doi.org/10.1186/s13054-020-02993-5[publishedOnlineFirst:2020/06/07].
Article PubMed PubMed Central Google Scholar
Barichello T, Generoso JS, Singer M, et al. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care. 2022;26(1):14. https://doi.org/10.1186/s13054-021-03862-5[publishedOnlineFirst:2022/01/08].
Article PubMed PubMed Central Google Scholar
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed). 2021;372: n71. https://doi.org/10.1136/bmj.n71[publishedOnlineFirst:2021/03/31].
Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. https://doi.org/10.1186/1471-2288-5-13[publishedOnlineFirst:2005/04/21].
Article PubMed PubMed Central Google Scholar
Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. https://doi.org/10.1186/1471-2288-14-135[publishedOnlineFirst:2014/12/20].
Article PubMed PubMed Central Google Scholar
Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed). 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557[publishedOnlineFirst:2003/09/06].
Orhun G, Tüzün E, Özcan PE, et al. Association Between Inflammatory Markers and Cognitive Outcome in Patients with Acute Brain Dysfunction Due to Sepsis. Noro psikiyatri arsivi. 2019;56(1):63–70. https://doi.org/10.29399/npa.23212[publishedOnlineFirst:2019/03/27].
Weigand MA, Volkmann M, Schmidt H, et al. Neuron-specific enolase as a marker of fatal outcome in patients with severe sepsis or septic shock. Anesthesiology. 2000;92(3):905–7. https://doi.org/10.1097/00000542-200003000-00057.
Article CAS PubMed Google Scholar
Zhang LT, Xu X, Han H, et al. The value of NSE to predict ICU mortality in patients with septic shock: A prospective observational study. Medicine. 2022;101(40): e30941. https://doi.org/10.1097/md.0000000000030941[publishedOnlineFirst:2022/10/13].
Article CAS PubMed PubMed Central Google Scholar
Feng Q, Wu L, Ai YH, et al. The diagnostic value of neuron-specific enolase, central nervous system specific protein and interleukin-6 in sepsis-associated encephalopathy. Zhonghua Nei Ke Za Zhi. 2017;56(10):747–51. https://doi.org/10.3760/cma.j.issn.0578-1426.2017.10.008[publishedOnlineFirst:2017/10/19].
Article CAS PubMed Google Scholar
Guo W, Li Y, Li Q. Relationship between miR-29a levels in the peripheral blood and sepsis-related encephalopathy. American Journal of Translational Research. 2021;13(7):7715–22.
CAS PubMed PubMed Central Google Scholar
Wu L, Feng Q, Ai ML, et al. The dynamic change of serum S100B levels from day 1 to day 3 is more associated with sepsis-associated encephalopathy. Sci Rep. 2020;10(1):7718. https://doi.org/10.1038/s41598-020-64200-3[publishedOnlineFirst:2020/05/10].
Article CAS PubMed PubMed Central Google Scholar
Yan S, Gao M, Chen H, et al. Expression level of glial fibrillary acidic protein and its clinical significance in patients with sepsis-associated encephalopathy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019;44(10):1137–42. https://doi.org/10.11817/j.issn.1672-7347.2019.190180[publishedOnlineFirst:2019/12/21].
Yao B, Zhang LN, Ai YH, et al. Serum S100β is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: a prospective and observational study. Neurochem Res. 2014;39(7):1263–9. https://doi.org/10.1007/s11064-014-1308-0[publishedOnlineFirst:2014/04/25].
Article CAS PubMed Google Scholar
Zhang LN, Wang XH, Wu L, et al. Diagnostic and Predictive Levels of Calcium-binding Protein A8 and Tumor Necrosis Factor Receptor-associated Factor 6 in Sepsis-associated Encephalopathy: A Prospective Observational Study. Chin Med J (Engl). 2016;129(14):1674–81. https://doi.org/10.4103/0366-6999.185860[publishedOnlineFirst:2016/07/15].
Article CAS PubMed Google Scholar
Li XL, Xie JF, Ye XY, et al. Value of cerebral hypoxic-ischemic injury markers in the early diagnosis of sepsis associated encephalopathy in burn patients with sepsis. Zhonghua Shao Shang Za Zhi. 2022;38(1):21–8. https://doi.org/10.3760/cma.j.cn501120-20211006-00346[publishedOnlineFirst:2022/02/15].
Lu CX, Qiu T, Tong HS, et al. Peripheral T-lymphocyte and natural killer cell population imbalance is associated with septic encephalopathy in patients with severe sepsis. Exp Ther Med. 2016;11(3):1077–84. https://doi.org/10.3892/etm.2016.3000[publishedOnlineFirst:2016/03/22].
Article CAS PubMed PubMed Central Google Scholar
Nguyen DN, Huyghens L, Zhang H, et al. Cortisol is an associated-risk factor of brain dysfunction in patients with severe sepsis and septic shock. Biomed Res Int. 2014;2014: 712742. https://doi.org/10.1155/2014/712742[publishedOnlineFirst:2014/06/03].
Article PubMed PubMed Central Google Scholar
Erikson K, Ala-Kokko TI, Koskenkari J, et al. Elevated serum S-100 beta in patients with septic shock is associated with delirium. Acta Anaesth Scand. 2019;63(1):69–73. https://doi.org/10.1111/aas.13228.
Article CAS PubMed Google Scholar
Wu L, Ai ML, Feng Q, et al. Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication. J Crit Care. 2019;52:172–9. https://doi.org/10.1016/j.jcrc.2019.04.018[publishedOnlineFirst:2019/05/13].
Comments (0)