Elborn J (2016) Cystic fibrosis. Lancet 388:2519–2531. https://doi.org/10.1016/S0140-6736(16)00576-6
Article CAS PubMed Google Scholar
Singh A, Ralhan A, Schwarz C et al (2018) Fungal pathogens in CF airways: leave or treat? Mycopathologia 183:119–137. https://doi.org/10.1007/S11046-017-0184-Y
Article CAS PubMed Google Scholar
Poore TS, Zemanick ET (2023) Infection, Allergy, and Inflammation: the role of Aspergillus fumigatus in cystic fibrosis. Microorganisms 11(8):2013. https://doi.org/10.3390/microorganisms11082013
Article CAS PubMed PubMed Central Google Scholar
Chaudhary N, Datta K, Askin FB et al (2012) Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation. Am J Respir Crit Care Med 185:301–310. https://doi.org/10.1164/RCCM.201106-1027OC
Article CAS PubMed PubMed Central Google Scholar
Simmonds EJ, Littlewood JM, Evans EGV (1990) Cystic fibrosis and allergic bronchopulmonary aspergillosis. Arch Dis Child 65:507–511. https://doi.org/10.1136/ADC.65.5.507
Article CAS PubMed PubMed Central Google Scholar
Burgel PR, Southern KW, Addy C et al (2024) Standards for the care of people with cystic fibrosis (CF); recognising and addressing CF health issues. J Cyst Fibros 23:187–202. https://doi.org/10.1016/J.JCF.2024.01.005
Heijerman HGM, McKone EF, Downey DG et al (2019) Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet (London, England) 394:1940–1948. https://doi.org/10.1016/S0140-6736(19)32597-8
Article CAS PubMed Google Scholar
Middleton PG, Mall MA, Dřevínek P et al (2019) Elexacaftor–tezacaftor–ivacaftor for cystic fibrosis with a Single Phe508del allele. N Engl J Med 381:1809–1819. https://doi.org/10.1056/NEJMOA1908639
Article CAS PubMed PubMed Central Google Scholar
Alicandro G, Gramegna A, Bellino F et al (2024) Heterogeneity in response to elexacaftor/tezacaftor/ivacaftor in people with cystic fibrosis. J Cyst Fibros 23(6):1072–1079. https://doi.org/10.1016/j.jcf.2024.04.013
Article CAS PubMed Google Scholar
Breuer O, Schultz A, Garratt LW et al (2020) Aspergillus infections and progression of structural lung disease in children with cystic fibrosis. Am J Respir Crit Care Med 201:688–696. https://doi.org/10.1164/RCCM.201908-1585OC
Article CAS PubMed Google Scholar
Stevens DA, Moss RB, Kurup VP et al (2003) Allergic bronchopulmonary aspergillosis in cystic fibrosis—state of the art: cystic fibrosis foundation consensus conference. Clin Infect Dis. https://doi.org/10.1086/376525
Schwarz C (2023) Clinical relevance of fungi in cystic fibrosis. Semin Respir Crit Care Med 44:252–259. https://doi.org/10.1055/s-0042-1759882
Graham BL, Steenbruggen I, Barjaktarevic IZ et al (2019) Standardization of spirometry 2019 update an official American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med 200:E70–E88. https://doi.org/10.1164/rccm.201908-1590ST
Article PubMed PubMed Central Google Scholar
Quanjer PH, Stanojevic S, Cole TJ et al (2012) Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 40:1324–1343. https://doi.org/10.1183/09031936.00080312
Article PubMed PubMed Central Google Scholar
Burgel PR, Baixench MT, Amsellem M et al (2012) High prevalence of azole-resistant Aspergillus fumigatus in adults with cystic fibrosis exposed to itraconazole. Antimicrob Agents Chemother 56:869–874. https://doi.org/10.1128/AAC.05077-11
Article CAS PubMed PubMed Central Google Scholar
Baxter CG, Dunn G, Jones AM et al (2013) Novel immunologic classification of aspergillosis in adult cystic fibrosis. J Allergy Clin Immunol 132(3):560-566.e10. https://doi.org/10.1016/J.JACI.2013.04.007
Currie AJ, Main ET, Wilson HM et al (2020) CFTR Modulators dampen Aspergillus-induced reactive oxygen species production by cystic fibrosis phagocytes. Front Cell Infect Microbiol 24(10):372. https://doi.org/10.3389/FCIMB.2020.00372
Jones JT, Morelli KA, Vesely EM et al (2023) The cystic fibrosis treatment Trikafta affects the growth, viability, and cell wall of Aspergillus fumigatus biofilms. MBio 14(5):e0151623. https://doi.org/10.1128/MBIO.01516-23
Zolin A, Adamoli A, Bakkeheim E van RJ et al (2024) ECFSPR annual report 2022. www.ecfs.eu/ecfspr. Accessed 24 Jul 2024
European Cystic Fibrosis Society (2020) ECFSPR annual report 2018. www.ecfs.eu/ecfspr. Accessed 24 Jul 2024
Campagna G, Amato A, Majo F et al (2024) [Italian Cystic Fibrosis Registry (ICFR). Report 2021–2022]. Epidemiologia e prevenzione 48:1–41. https://doi.org/10.19191/EP24.2.S2.031
Frost FJ, Nazareth DS, Charman SC et al (2019) Ivacaftor is associated with reduced lung infection by key cystic fibrosis pathogens. A cohort study using national registry data. Ann Am Thorac Soc 16:1375–1382. https://doi.org/10.1513/ANNALSATS.201902-122OC
Bessonova L, Volkova N, Higgins M et al (2018) Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax 73:731–740. https://doi.org/10.1136/THORAXJNL-2017-210394
Al Shakirchi M, Sorjonen K, Hjelte L et al (2024) Impact of lumacaftor/ivacaftor on the bacterial and fungal respiratory pathogens in cystic fibrosis: a prospective multicenter cohort study in Sweden. Ther Adv Respir Dis 18:17534666241254090. https://doi.org/10.1177/17534666241254090
Article CAS PubMed PubMed Central Google Scholar
Enaud R, Lussac-Sorton F, Charpentier E et al (2023) Effects of lumacaftor–ivacaftor on airway microbiota-mycobiota and inflammation in patients with cystic fibrosis appear to be linked to pseudomonas aeruginosa chronic colonization. Microbiol Spectr 11(2):e0225122. https://doi.org/10.1128/SPECTRUM.02251-22
Düesberg U, Wosniok J, Naehrlich L et al (2020) Risk factors for respiratory Aspergillus fumigatus in German cystic fibrosis patients and impact on lung function. Sci Rep 10(1):18999. https://doi.org/10.1038/S41598-020-75886-W
Article PubMed PubMed Central Google Scholar
Chesnay A, Bailly É, Cosson L et al (2022) Advent of elexacaftor/tezacaftor/ivacaftor for cystic fibrosis treatment: What consequences on Aspergillus-related diseases? Preliminary insights. J Cyst Fibros 21:1084–1085. https://doi.org/10.1016/J.JCF.2022.09.007
Article CAS PubMed Google Scholar
Carvalho A, Cunha C, Pasqualotto AC et al (2010) Genetic variability of innate immunity impacts human susceptibility to fungal diseases. Int J Infect Dis 14(6):e460–e468. https://doi.org/10.1016/J.IJID.2009.06.028
Article CAS PubMed Google Scholar
Chauhan B, Santiago L, Hutcheson PS et al (2000) Evidence for the involvement of two different MHC class II regions in susceptibility or protection in allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol 106:723–729. https://doi.org/10.1067/MAI.2000.109913
Article CAS PubMed Google Scholar
Overton NLD, Denning DW, Bowyer P, Simpson A (2016) Genetic susceptibility to allergic bronchopulmonary aspergillosis in asthma: a genetic association study. Allergy Asthma Clin Immunol 12:47. https://doi.org/10.1186/S13223-016-0152-Y
Article PubMed PubMed Central Google Scholar
Bercusson A, Jarvis G, Shah A (2021) CF Fungal disease in the age of CFTR modulators. Mycopathologia 186:655–664. https://doi.org/10.1007/s11046-021-00541-5
Comments (0)