Organization WH (2013) A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013. World Health Organization
Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82-97
Article CAS PubMed Google Scholar
Dzau VJ (2001) Theodore Cooper lecture: tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 37:1047–1052
Article CAS PubMed Google Scholar
Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, De Meyer GRY (2018) Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 114:622–634
Article CAS PubMed Google Scholar
Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC (2018) Vascular smooth muscle contraction in hypertension. Cardiovasc Res 114:529–539
Article CAS PubMed PubMed Central Google Scholar
Xiang R, Chen J, Li S, Yan H, Meng Y, Cai J, Cui Q, Yang Y, Xu M, Geng B, Yang J (2020) VSMC-specific deletion of FAM3A attenuated ang II-promoted hypertension and cardiovascular hypertrophy. Circ Res 126:1746–1759
Article CAS PubMed Google Scholar
Efentakis P, Molitor M, Kossmann S, Bochenek ML, Wild J, Lagrange J, Finger S, Jung R, Karbach S, Schafer K, Schulz A, Wild P, Munzel T, Wenzel P (2022) Tubulin-folding cofactor E deficiency promotes vascular dysfunction by increased endoplasmic reticulum stress. Eur Heart J 43:488–500
Article CAS PubMed Google Scholar
Jiao X, Yu H, Du Z, Li L, Hu C, Du Y, Zhang J, Zhang X, Lv Q, Li F, Sun Q, Wang Y, Qin Y (2023) Vascular smooth muscle cells specific deletion of angiopoietin-like protein 8 prevents angiotensin II-promoted hypertension and cardiovascular hypertrophy. Cardiovasc Res 119:1856–1868
Article CAS PubMed Google Scholar
Wu N, Zheng F, Li N, Han Y, Xiong XQ, Wang JJ, Chen Q, Li YH, Zhu GQ, Zhou YB (2021) RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biol 48:102204
Article CAS PubMed PubMed Central Google Scholar
Zhao W, Yao M, Zhang Y, Xiong D, Dai G, Zhang J, Cao Y, Li H (2022) Endothelial cyclin I reduces vulnerability to angiotensin II-induced vascular remodeling and abdominal aortic aneurysm risk. Microvasc Res 142:104348
Article CAS PubMed Google Scholar
Chen XY, Yang LP, Zheng YL, Li YX, Zhong DL, Jin RJ, Li J (2022) Electroacupuncture attenuated phenotype transformation of vascular smooth muscle cells via PI3K/Akt and MAPK signaling pathways in spontaneous hypertensive rats. Chin J Integr Med 28:357–365
Article CAS PubMed Google Scholar
Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217
Article CAS PubMed Google Scholar
Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Sward K (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 93:839–847
Article CAS PubMed Google Scholar
Avila-Medina J, Calderon-Sanchez E, Gonzalez-Rodriguez P, Monje-Quiroga F, Rosado JA, Castellano A, Ordonez A, Smani T (2016) Orai1 and TRPC1 proteins co-localize with CaV1.2 channels to form a signal complex in vascular smooth muscle cells. J Biol Chem 291:21148–21159
Article CAS PubMed PubMed Central Google Scholar
Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98:557–563
Article CAS PubMed PubMed Central Google Scholar
Jia X, Chen X, Gao C, Wang H, Yang C, Jiang LH, Fan Y (2023) Functional cooperation between IK(Ca) and TRPC1 channels regulates serum-induced vascular smooth muscle cell proliferation via mediating Ca(2+) influx and ERK1/2 activation. Cell Prolif 56:e13385
Article CAS PubMed Google Scholar
Kecskes M, Jacobs G, Kerselaers S, Syam N, Menigoz A, Vangheluwe P, Freichel M, Flockerzi V, Voets T, Vennekens R (2015) The Ca(2+)-activated cation channel TRPM4 is a negative regulator of angiotensin II-induced cardiac hypertrophy. Basic Res Cardiol 110:43
Article PubMed PubMed Central Google Scholar
Zhang XY, Zhang LX, Tian CJ, Tang XY, Zhao LM, Guo YL, Cheng DJ, Chen XL, Ma LJ, Chen ZC (2016) LncRNAs BCYRN1 promoted the proliferation and migration of rat airway smooth muscle cells in asthma via upregulating the expression of transient receptor potential 1. Am J Transl Res 8:3409–3418
CAS PubMed PubMed Central Google Scholar
Wen X, Peng Y, Gao M, Zhu Y, Zhu Y, Yu F, Zhou T, Shao J, Feng L, Ma X (2022) Endothelial transient receptor potential canonical channel regulates angiogenesis and promotes recovery after myocardial infarction. J Am Heart Assoc 11:e023678
Article CAS PubMed PubMed Central Google Scholar
Zheng H, Li X, Zeng X, Huang C, Ma M, Lv X, Zhang Y, Sun L, Wang G, Du Y, Guan Y (2021) TMEM16A inhibits angiotensin II-induced basilar artery smooth muscle cell migration in a WNK1-dependent manner. Acta Pharm Sin B 11:3994–4007
Article CAS PubMed PubMed Central Google Scholar
Finney AC, Stokes KY, Pattillo CB, Orr AW (2017) Integrin signaling in atherosclerosis. Cell Mol Life Sci 74:2263–2282
Article CAS PubMed PubMed Central Google Scholar
Gao W, Guo N, Zhao S, Chen Z, Zhang W, Yan F, Liao H, Chi K (2020) FBXW7 promotes pathological cardiac hypertrophy by targeting EZH2-SIX1 signaling. Exp Cell Res 393:112059
Article CAS PubMed Google Scholar
Yuan JL, Yin CY, Li YZ, Song S, Fang GJ, Wang QS (2021) EZH2 as an epigenetic regulator of cardiovascular development and diseases. J Cardiovasc Pharmacol 78:192–201
Article CAS PubMed Google Scholar
Das S, Zhang E, Senapati P, Amaram V, Reddy MA, Stapleton K, Leung A, Lanting L, Wang M, Chen Z, Kato M, Oh HJ, Guo Q, Zhang X, Zhang B, Zhang H, Zhao Q, Wang W, Wu Y, Natarajan R (2018) A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ Res 123:1298–1312
Article CAS PubMed PubMed Central Google Scholar
Li FJ, Zhang CL, Luo XJ, Peng J, Yang TL (2019) Involvement of the MiR-181b-5p/HMGB1 pathway in ang II-induced phenotypic transformation of smooth muscle cells in hypertension. Aging Dis 10:231–248
Article PubMed PubMed Central Google Scholar
Liu G, Hitomi H, Hosomi N, Lei B, Pelisch N, Nakano D, Kiyomoto H, Ma H, Nishiyama A (2010) Mechanical stretch potentiates angiotensin II-induced proliferation in spontaneously hypertensive rat vascular smooth muscle cells. Hypertens Res 33:1250–1257
Article CAS PubMed Google Scholar
Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE (2018) Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension. Arterioscler Thromb Vasc Biol 38:1969–1985
Article CAS PubMed PubMed Central Google Scholar
Wang F, Chen HZ (2020) Histone deacetylase SIRT1, smooth muscle cell function, and vascular diseases. Front Pharmacol 11:537519
Article CAS PubMed PubMed Central Google Scholar
Hu C, Zuo K, Li K, Gao Y, Chen M, Hu R, Liu Y, Chi H, Wang H, Qin Y, Liu X, Zhong J, Cai J, Yang X, Li J (2020) p38/JNK is required for the proliferation and phenotype changes of vascular smooth muscle cells induced by L3MBTL4 in essential hypertension. Int J Hypertens 2020:3123968
Comments (0)