Barnett R (2018) Osteoarthritis. Lancet 391:1985. https://doi.org/10.1016/s0140-6736(18)31064-x
Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl AJ, Pelletier JP (2016) Osteoarthritis. Nat Rev Dis Primers 2:16072. https://doi.org/10.1038/nrdp.2016.72
Bortoluzzi A, Furini F, Scirè CA (2018) Osteoarthritis and its management - Epidemiology, nutritional aspects and environmental factors. Autoimmun Rev 17:1097–1104. https://doi.org/10.1016/j.autrev.2018.06.002
Loughlin J (2022) Translating osteoarthritis genetics research: challenging times ahead. Trends Mol Med 28:176–182. https://doi.org/10.1016/j.molmed.2021.12.007
Mobasheri A, Rayman MP, Gualillo O, Sellam J, van der Kraan P, Fearon U (2017) The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 13:302–311. https://doi.org/10.1038/nrrheum.2017.50
Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16:718–735. https://doi.org/10.1038/nrd.2017.116
Article PubMed PubMed Central Google Scholar
Kubben N, Misteli T (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18:595–609. https://doi.org/10.1038/nrm.2017.68
Article PubMed PubMed Central Google Scholar
Boulestreau J, Maumus M, Jorgensen C, Noël D (2021) Extracellular vesicles from mesenchymal stromal cells: Therapeutic perspectives for targeting senescence in osteoarthritis. Adv Drug Deliv Rev 175:113836. https://doi.org/10.1016/j.addr.2021.113836
Coryell PR, Diekman BO, Loeser RF (2021) Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 17:47–57. https://doi.org/10.1038/s41584-020-00533-7
Jeon OH, David N, Campisi J, Elisseeff JH (2018) Senescent cells and osteoarthritis: a painful connection. J Clin Invest 128:1229–1237. https://doi.org/10.1172/jci95147
Article PubMed PubMed Central Google Scholar
Swahn H, Li K, Duffy T, Olmer M, D’Lima DD, Mondala TS, Natarajan P, Head SR, Lotz MK (2023) Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus. Ann Rheum Dis 82:403–415. https://doi.org/10.1136/ard-2022-223227
Jeon OH, Wilson DR, Clement CC, Rathod S, Cherry C, Powell B, Lee Z, Khalil AM, Green JJ, Campisi J, Santambrogio L, Witwer KW, Elisseeff JH (2019) Senescence cell-associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. JCI Insight 4:e125019. https://doi.org/10.1172/jci.insight.125019
Article PubMed PubMed Central Google Scholar
Martin BJE, Brind’Amour J, Kuzmin A, Jensen KN, Liu ZC, Lorincz M, Howe LJ (2021) Transcription shapes genome-wide histone acetylation patterns. Nat Commun 12:210. https://doi.org/10.1038/s41467-020-20543-z
Article PubMed PubMed Central Google Scholar
Shen Y, Wei W, Zhou DX (2015) Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci 20:614–621. https://doi.org/10.1016/j.tplants.2015.07.005
Shvedunova M, Akhtar A (2022) Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 23:329–349. https://doi.org/10.1038/s41580-021-00441-y
Chen TF, Hao HF, Zhang Y, Chen XY, Zhao HS, Yang R, Li P, Qiu LX, Sang YH, Xu C, Liu SX (2022) HBO1 induces histone acetylation and is important for non-small cell lung cancer cell growth. Int J Biol Sci 18:3313–3323. https://doi.org/10.7150/ijbs.72526
Article PubMed PubMed Central Google Scholar
Wang H, Qiu Y, Zhang H, Chang N, Hu Y, Chen J, Hu R, Liao P, Li Z, Yang Y, Cen Q, Ding X, Li M, Xie X, Li Y (2023) Histone acetylation by HBO1 (KAT7) activates Wnt/β-catenin signaling to promote leukemogenesis in B-cell acute lymphoblastic leukemia. Cell Death Dis 14:498. https://doi.org/10.1038/s41419-023-06019-0
Article PubMed PubMed Central Google Scholar
Zhong W, Liu H, Deng L, Chen G, Liu Y (2021) HBO1 overexpression is important for hepatocellular carcinoma cell growth. Cell Death Dis 12:549. https://doi.org/10.1038/s41419-021-03818-1
Article PubMed PubMed Central Google Scholar
Mi YY, Ji Y, Zhang L, Sun CY, Wei BB, Yang DJ, Wan HY, Qi XW, Wu S, Zhu LJ (2023) A first-in-class HBO1 inhibitor WM-3835 inhibits castration-resistant prostate cancer cell growth in vitro and in vivo. Cell Death Dis 14:67. https://doi.org/10.1038/s41419-023-05606-5
Article PubMed PubMed Central Google Scholar
Wang W, Zheng Y, Sun S, Li W, Song M, Ji Q, Wu Z, Liu Z, Fan Y, Liu F, Li J, Esteban CR, Wang S, Zhou Q, Belmonte JCI, Zhang W, Qu J, Tang F, Liu GH (2021) A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med 13:2655. https://doi.org/10.1126/scitranslmed.abd2655
Bobacz K, Erlacher L, Smolen J, Soleiman A, Graninger WB (2004) Chondrocyte number and proteoglycan synthesis in the aging and osteoarthritic human articular cartilage. Ann Rheum Dis 63:1618–1622. https://doi.org/10.1136/ard.2002.002162
Article PubMed PubMed Central Google Scholar
Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420. https://doi.org/10.1038/nrrheum.2016.65
Article PubMed PubMed Central Google Scholar
Lotz MK, Caramés B (2011) Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol 7:579–587. https://doi.org/10.1038/nrrheum.2011.109
Article PubMed PubMed Central Google Scholar
Valdes AM, Goldring MB (2017) Mitochondrial DNA haplogroups and ageing mechanisms in osteoarthritis. Ann Rheum Dis 76:939–941. https://doi.org/10.1136/annrheumdis-2016-210783
Alberti S, Hyman AA (2021) Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol 22:196–213. https://doi.org/10.1038/s41580-020-00326-6
Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19:371–384. https://doi.org/10.1038/s41576-018-0004-3
van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446. https://doi.org/10.1038/nature13193
Article PubMed PubMed Central Google Scholar
Sahin E, DePinho RA (2012) Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 13:397–404. https://doi.org/10.1038/nrm3352
Article PubMed PubMed Central Google Scholar
Wu D, Prives C (2018) Relevance of the p53-MDM2 axis to aging. Cell Death Differ 25:169–179. https://doi.org/10.1038/cdd.2017.187
Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, Kim LJ, Osborne B, Joshi S, Lu Y, Treviño-Villarreal JH, Kang MJ, Hung TT, Lee B, Williams EO, Igarashi M, Mitchell JR, Wu LE, Turner N, Arany Z, Guarente L, Sinclair DA (2018) Impairment of an Endothelial NAD(+)-H(2)S Signaling Network Is a Reversible Cause of Vascular Aging. Cell 173:74-89.e20. https://doi.org/10.1016/j.cell.2018.02.008
Comments (0)