Rare variants in cardiomyopathy genes predispose to cardiac injury in severe COVID-19 patients of African or Hispanic ancestry

Yang J, Zhang Q, Cao Z, Gao J, Pfeiffer D, Zhong L, Zeng DD (2021) The impact of non-pharmaceutical interventions on the prevention and control of COVID-19 in New York City<? A3B2 show [editpick]?>. Chaos: An Interdisciplinary Journal of Nonlinear Science 31:021101

Gibson PG, Qin L, Puah SH (2020) COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust 213(54–56):e51

Google Scholar 

Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C et al (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 180:934–943. https://doi.org/10.1001/jamainternmed.2020.0994

Article  CAS  PubMed  Google Scholar 

Shi S, Qin M, Yang B (2020) Coronavirus disease 2019 (COVID-19) and cardiac injury-reply. JAMA Cardiol 5:1199–1200. https://doi.org/10.1001/jamacardio.2020.2456

Article  PubMed  Google Scholar 

Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q et al (2020) Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 5:802–810. https://doi.org/10.1001/jamacardio.2020.0950

Article  PubMed  PubMed Central  Google Scholar 

Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, Zhao S, Somani S, Van Vleck T, Vaid A et al (2020) Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol 76:533–546. https://doi.org/10.1016/j.jacc.2020.06.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Topol EJ (2020) COVID-19 can affect the heart. Science (New York, NY) 370:408–409. https://doi.org/10.1126/science.abe2813

Article  CAS  Google Scholar 

Felker GM, Jaeger CJ, Klodas E, Thiemann DR, Hare JM, Hruban RH, Kasper EK, Baughman KL (2000) Myocarditis and long-term survival in peripartum cardiomyopathy. Am Heart J 140:785–791. https://doi.org/10.1067/mhj.2000.110091

Article  CAS  PubMed  Google Scholar 

Midei MG, DeMent SH, Feldman AM, Hutchins G, Baughman K (1990) Peripartum myocarditis and cardiomyopathy. Circulation 81:922–928

Article  CAS  PubMed  Google Scholar 

Ware JS, Li J, Mazaika E, Yasso CM, DeSouza T, Cappola TP, Tsai EJ, Hilfiker-Kleiner D, Kamiya CA, Mazzarotto F et al (2016) Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med 374:233–241. https://doi.org/10.1056/NEJMoa1505517

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goli R, Li J, Brandimarto J, Levine LD, Riis V, McAfee Q, DePalma S, Haghighi A, Seidman J, Seidman CE (2021) Genetic and phenotypic landscape of peripartum cardiomyopathy. Circulation 143:1852–1862

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. https://doi.org/10.1093/nar/gkq603

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D, Hamamsy T, Lek M, Samocha KE, Cummings BB et al (2017) The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 45:D840–D845. https://doi.org/10.1093/nar/gkw971

Article  CAS  PubMed  Google Scholar 

Qu HQ, Qu J, Vaccaro C, Chang X, Mentch F, Li J, Mafra F, Nguyen K, Gonzalez M, March M et al (2022) Genetic analysis for type 1 diabetes genes in juvenile dermatomyositis unveils genetic disease overlap. Rheumatology (Oxford) 61:3497–3501. https://doi.org/10.1093/rheumatology/keac100

Article  CAS  PubMed  Google Scholar 

Liu Y, Qu HQ, Qu J, Chang X, Mentch FD, Nguyen K, Tian L, Glessner J, Sleiman PMA, Hakonarson H (2022) Burden of rare coding variants reveals genetic heterogeneity between obese and non-obese asthma patients in the African American population. Respir Res 23:116. https://doi.org/10.1186/s12931-022-02039-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Q, Wang K (2017) InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet 100:267–280. https://doi.org/10.1016/j.ajhg.2017.01.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21:577–581. https://doi.org/10.1002/humu.10212

Article  CAS  PubMed  Google Scholar 

Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44:D862–D868

Article  CAS  PubMed  Google Scholar 

Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–D1067. https://doi.org/10.1093/nar/gkx1153

Article  CAS  PubMed  Google Scholar 

Guo MH, Plummer L, Chan YM, Hirschhorn JN, Lippincott MF (2018) Burden testing of rare variants identified through exome sequencing via publicly available control data. Am J Hum Genet 103:522–534. https://doi.org/10.1016/j.ajhg.2018.08.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pertea M, Shumate A, Pertea G, Varabyou A, Chang Y-C, Madugundu AK, Pandey A, Salzberg SL (2018) Thousands of large-scale RNA sequencing experiments yield a comprehensive new human gene list and reveal extensive transcriptional noise. bioRxiv 332825. https://doi.org/10.1101/332825

Kohler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Ayme S, Baynam G, Bello SM, Boerkoel CF, Boycott KM et al (2017) The human phenotype ontology in 2017. Nucleic Acids Res 45:D865–D876. https://doi.org/10.1093/nar/gkw1039

Article  CAS  PubMed  Google Scholar 

Hancock AM, Alkorta-Aranburu G, Witonsky DB, Di Rienzo A (2010) Adaptations to new environments in humans: the role of subtle allele frequency shifts. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2459–2468

Article  CAS  Google Scholar 

Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, Danis D, Balagura G, Baynam G, Brower AM (2021) The human phenotype ontology in 2021. Nucleic Acids Res 49:D1207–D1217

Article  PubMed  Google Scholar 

Kanneganti T-D (2010) Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 10:688–698

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blankenberg S, Salomaa V, Makarova N, Ojeda F, Wild P, Lackner KJ, Jorgensen T, Thorand B, Peters A, Nauck M et al (2016) Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur Heart J 37:2428–2437. https://doi.org/10.1093/eurheartj/ehw172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA et al (2023) 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 44:3503–3626. https://doi.org/10.1093/eurheartj/ehad194

Article  CAS  PubMed  Google Scholar 

Sidwell RU, Yates R, Atherton D (2000) Dilated cardiomyopathy in dystrophic epidermolysis bullosa. Arch Dis Child 83:59–63. https://doi.org/10.1136/adc.83.1.59

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bugiardini E, Nunes AM, Oliveira-Santos A, Dagda M, Fontelonga TM, Barraza-Flores P, Pittman AM, Morrow JM, Parton M, Houlden H (2022) Integrin α7 mutations are associated with adult-onset cardiac dysfunction in humans and mice. J Am Heart Assoc 11:e026494

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif