Role of Immune Cells in Mediating the Effect of Lipids on Preeclampsia

Magee LA, Smith GN, Bloch C, Côté AM, Jain V, Nerenberg K, et al. Guideline no. 426: Hypertensive disorders of pregnancy: Diagnosis, prediction, prevention, and management. J Obstet Gynaecol Can. 2022;44(5):547-571.e1. https://doi.org/10.1016/j.jogc.2022.03.002.

Article  PubMed  Google Scholar 

Laissue P, Vaiman D. Exploring the molecular aetiology of preeclampsia by massive parallel sequencing of DNA. Curr Hypertens Rep. 2020;22(4):31. https://doi.org/10.1007/s11906-020-01039-z.

Article  PubMed  Google Scholar 

Stadler JT, Scharnagl H, Wadsack C, Marsche G. Preeclampsia affects lipid metabolism and HDL function in mothers and their offspring. Antioxidants (Basel). 2023;12(4):795. https://doi.org/10.3390/antiox12040795.

Article  CAS  PubMed  Google Scholar 

Canfield J, Arlier S, Mong EF, Lockhart J, VanWye J, Guzeloglu-Kayisli O, et al. Decreased LIN28B in preeclampsia impairs human trophoblast differentiation and migration. FASEB J. 2019;33(2):2759–69. https://doi.org/10.1096/fj.201801163R.

Article  CAS  PubMed  Google Scholar 

Amaral LM, Wallace K, Owens M, LaMarca B. Pathophysiology and current clinical management of preeclampsia. Curr Hypertens Rep. 2017;19(8):61. https://doi.org/10.1007/s11906-017-0757-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dymara-Konopka W, Laskowska M, Oleszczuk J. Preeclampsia - current management and future approach. Curr Pharm Biotechnol. 2018;19(10):786–96. https://doi.org/10.2174/1389201019666180925120109.

Article  CAS  PubMed  Google Scholar 

Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019;366:l2381. https://doi.org/10.1136/bmj.l2381.

Article  PubMed  Google Scholar 

Lee SM, Moon JY, Lim BY, Kim SM, Park CW, Kim BJ, et al. Increased biosynthesis and accumulation of cholesterol in maternal plasma, but not amniotic fluid in pre-eclampsia. Sci Rep. 2019;9(1):1550. https://doi.org/10.1038/s41598-018-37757-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He B, Liu Y, Maurya MR, Benny P, Lassiter C, Li H, et al. The maternal blood lipidome is indicative of the pathogenesis of severe preeclampsia. J Lipid Res. 2021;62:100118. https://doi.org/10.1016/j.jlr.2021.100118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiznitzer A, Mayer A, Novack V, Sheiner E, Gilutz H, Malhotra A, et al. Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: a population-based study. Am J Obstet Gynecol. 2009;201(5):482.e1-8. https://doi.org/10.1016/j.ajog.2009.05.032.

Article  CAS  PubMed  Google Scholar 

Hubel CA, McLaughlin MK, Evans RW, Hauth BA, Sims CJ, Roberts JM. Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am J Obstet Gynecol. 1996;174(3):975–82. https://doi.org/10.1016/s0002-9378(96)70336-8.

Article  CAS  PubMed  Google Scholar 

Wang Y, Liu S, Wu C, Yu H, Ji X. Association between circulating unsaturated fatty acid and preeclampsia: a two-sample Mendelian randomization study. J Matern Fetal Neonatal Med. 2024;37(1):2294691. https://doi.org/10.1080/14767058.2023.2294691.

Article  CAS  PubMed  Google Scholar 

Hessami K, Kasraeian M, Asadi N, Vafaei H, Foroughinia L. Association of maternal and umbilical cord blood lipid parameters with uterine and fetal-placental blood flow in hypertensive and normotensive pregnancies. Int J Womens Health. 2020;12:115–25. https://doi.org/10.2147/IJWH.S233029.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng Y, Li C, Liu CX. Immune cell infiltration landscape and immune marker molecular typing in preeclampsia. Bioengineered. 2021;12(1):540–54. https://doi.org/10.1080/21655979.2021.1875707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nelson DB, Ziadie MS, McIntire DD, Rogers BB, Leveno KJ. Placental pathology suggesting that preeclampsia is more than one disease. Am J Obstet Gynecol. 2014;210(1):66.e1-7. https://doi.org/10.1016/j.ajog.2013.09.010.

Article  PubMed  Google Scholar 

Dunk CE, Bucher M, Zhang J, Hayder H, Geraghty DE, Lye SJ, et al. Human leukocyte antigen HLA-C, HLA-G, HLA-F, and HLA-E placental profiles are altered in early severe preeclampsia and preterm birth with chorioamnionitis. Am J Obstet Gynecol. 2022;227(4):641.e1-641.e13. https://doi.org/10.1016/j.ajog.2022.07.021.

Article  CAS  PubMed  Google Scholar 

Jebbink J, Wolters A, Fernando F, Afink G, van der Post J, Ris-Stalpers C. Molecular genetics of preeclampsia and HELLP syndrome - a review. Biochim Biophys Acta. 2012;1822(12):1960–9. https://doi.org/10.1016/j.bbadis.2012.08.004.

Article  CAS  PubMed  Google Scholar 

Rana S, Karumanchi SA, Lindheimer MD. Angiogenic factors in diagnosis, management, and research in preeclampsia. Hypertension. 2014;63(2):198–202. https://doi.org/10.1161/HYPERTENSIONAHA.113.02293.

Article  CAS  PubMed  Google Scholar 

Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, et al. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol. 2023;19(4):257–70. https://doi.org/10.1038/s41581-022-00670-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen C, Song Y, Fan W, Guo X, Li J, Zhao R. Changes in expression levels of immune cells and inflammatory cytokines in pre-eclampsia patients before and after delivery. J Reprod Immunol. 2023;156:103812. https://doi.org/10.1016/j.jri.2023.103812.

Article  CAS  PubMed  Google Scholar 

Carnegie R, Zheng J, Sallis HM, Jones HJ, Wade KH, Evans J, et al. Mendelian randomisation for nutritional psychiatry. Lancet Psychiatry. 2020;7(2):208–16. https://doi.org/10.1016/S2215-0366(19)30293-7.

Article  PubMed  Google Scholar 

Zhao J, Ming J, Hu X, Chen G, Liu J, Yang C. Bayesian weighted Mendelian randomization for causal inference based on summary statistics. Bioinformatics. 2020;36(5):1501–8. https://doi.org/10.1093/bioinformatics/btz749.

Article  CAS  PubMed  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: The STROBE-MR statement. JAMA. 2021;326(16):1614–21. https://doi.org/10.1001/jama.2021.18236.

Article  PubMed  Google Scholar 

Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63. https://doi.org/10.1002/sim.3034.

Article  PubMed  Google Scholar 

Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53(10):1415–24. https://doi.org/10.1038/s41588-021-00931-x.

Article  CAS  PubMed  Google Scholar 

Ottensmann L, Tabassum R, Ruotsalainen SE, Gerl MJ, Klose C, Widén E, et al. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun. 2023;14(1):6934. https://doi.org/10.1038/s41467-023-42532-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sidore C, Busonero F, Maschio A, Porcu E, Naitza S, Zoledziewska M, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet. 2015;47(11):1272–81. https://doi.org/10.1038/ng.3368.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif