Circ_0070987 Promotes Pyroptosis of Ovarian Granulosa Cells in Polycystic Ovarian Syndrome Through the miR-139-5/CDH1 Axis

Alesi S, Ee C, Moran LJ, Rao V, Mousa A. Nutritional supplements and complementary therapies in polycystic ovary syndrome. Adv Nutr. 2022;13(4):1243–66. https://doi.org/10.1093/advances/nmab141

Article  CAS  PubMed  Google Scholar 

Sadeghi HM, Adeli I, Calina D, et al. Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing. Int J Mol Sci. 2022;23(2):583. https://doi.org/10.3390/ijms23020583

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joham AE, Norman RJ, Stener-Victorin E, et al. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022;10(9):668–80. https://doi.org/10.1016/S2213-8587(22)00163-2

Article  CAS  PubMed  Google Scholar 

Mimouni NEH, Giacobini P. Polycystic ovary syndrome (PCOS): progress towards a better understanding and treatment of the syndrome. C R Biol. 2024;347:19–25. https://doi.org/10.5802/crbiol.147

Article  PubMed  Google Scholar 

Xiang Y, Wang H, Ding H, et al. Hyperandrogenism drives ovarian inflammation and pyroptosis: a possible pathogenesis of PCOS follicular dysplasia. Int Immunopharmacol. 2023;125(Pt A):111141. https://doi.org/10.1016/j.intimp.2023.111141

Tan W, Dai F, Yang D, et al. MiR-93-5p promotes granulosa cell apoptosis and ferroptosis by the NF-kB signaling pathway in polycystic ovary syndrome. Front Immunol. 2022;13:967151. https://doi.org/10.3389/fimmu.2022.967151

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310–29. https://doi.org/10.7150/thno.71086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Xie X, Ma Y, et al. Cyproterone acetate mediates IRE1alpha signaling pathway to alleviate pyroptosis of ovarian granulosa cells induced by hyperandrogen. Biology (Basel). 2022;11(12):1761. https://doi.org/10.3390/biology11121761

Article  CAS  PubMed  Google Scholar 

Liu CX, Chen LL. Circular rnas: characterization, cellular roles, and applications. Cell. 2022;185(12):2016–34. https://doi.org/10.1016/j.cell.2022.04.021

Article  CAS  PubMed  Google Scholar 

Xu L, Xiong F, Bai Y, et al. Circ_0043532 regulates miR-182/SGK3 axis to promote granulosa cell progression in polycystic ovary syndrome. Reprod Biol Endocrinol. 2021;19(1):167. https://doi.org/10.1186/s12958-021-00839-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu X, Guan R, Gong K, Xie H, Shi L. Circ_FURIN knockdown assuages testosterone-induced human ovarian granulosa-like tumor cell disorders by sponging miR-423-5p to reduce MTM1 expression in polycystic ovary syndrome. Reprod Biol Endocrinol. 2022;20(1):32. https://doi.org/10.1186/s12958-022-00891-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao C, Zhou Y, Shen X, et al. Circular RNA expression profiling in the fetal side of placenta from maternal polycystic ovary syndrome and circ_0023942 inhibits the proliferation of human ovarian granulosa cell. Arch Gynecol Obstet. 2020;301(4):963–71. https://doi.org/10.1007/s00404-020-05495-5

Article  CAS  PubMed  Google Scholar 

Li M, Zeng Z, Zhang A, Ye Q, Su S, Xia T. WGCNA analysis identifies polycystic ovary syndrome-associated circular RNAs that interact with RNA-binding proteins and sponge MiRNAs. Int J Gen Med. 2021;14:8737–51. https://doi.org/10.2147/IJGM.S335108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang P, Li X, Shen Y, et al. CircRNA-Phf21a_0002 promotes pyroptosis to aggravate hepatic ischemia/ reperfusion injury by sponging let-7b-5p. Heliyon. 2024;10(16):e34385. https://doi.org/10.1016/j.heliyon.2024.e34385

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang B, Yu X, Chen T, et al. CircRNA-SCAF8 promotes vascular endothelial cell pyroptosis by regulating the miR-93-5p/TXNIP axis. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023;52(4):473–84. https://doi.org/10.3724/zdxbyxb-2023-0091

Article  CAS  PubMed  Google Scholar 

Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23(13):7167. https://doi.org/10.3390/ijms23137167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Udesen PB, Sorensen AE, Svendsen R, et al. Circulating MiRNAs in women with polycystic ovary syndrome: a longitudinal cohort study. Cells. 2023;12(7):983. https://doi.org/10.3390/cells12070983

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao Y, Hu S, Zhang C, et al. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis. Int Immunopharmacol. 2022;105:108582. https://doi.org/10.1016/j.intimp.2022.108582

Article  CAS  PubMed  Google Scholar 

Zhao X, Zhong Y, Wang X, Shen J, An W. Advances in circular RNA and its applications. Int J Med Sci. 2022;19(6):975–85. https://doi.org/10.7150/ijms.71840

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuksel H, Ocalan M, Yilmaz O. E-Cadherin: an important functional molecule at respiratory barrier between defence and dysfunction. Front Physiol. 2021;12:720227. https://doi.org/10.3389/fphys.2021.720227

Article  PubMed  PubMed Central  Google Scholar 

Zubrzycka A, Migdalska-Sek M, Jedrzejczyk S, Brzezianska-Lasota E. Assessment of BMP7, SMAD4, and CDH1 expression profile and regulatory miRNA-542-3p in eutopic and ectopic endometrium of women with endometriosis. Int J Mol Sci. 2023;24(7):6637. https://doi.org/10.3390/ijms24076637

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu SL, Jeong DU, Noh EJ, et al. Exosomal miR-205-5p improves endometrial receptivity by upregulating E-Cadherin expression through ZEB1 inhibition. Int J Mol Sci. 2023;24(20):15149. https://doi.org/10.3390/ijms242015149

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salilew-Wondim D, Wang Q, Tesfaye D, et al. Polycystic ovarian syndrome is accompanied by repression of gene signatures associated with biosynthesis and metabolism of steroids, cholesterol and lipids. J Ovarian Res. 2015;8:24. https://doi.org/10.1186/s13048-015-0151-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai S, Xiong X, Tang B, et al. hsa-miR-199b-3p prevents the epithelial-mesenchymal transition and dysfunction of the renal tubule by regulating E-cadherin through targeting KDM6A in diabetic nephropathy. Oxid Med Cell Longev. 2021;2021:8814163. https://doi.org/10.1155/2021/8814163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang B, Li W, Ji TT, et al. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals. J Cell Mol Med. 2020;24(15):8779–88. https://doi.org/10.1111/jcmm.15513

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao L, Zhao Q, Hu B, Wang J, Liu C, Xu H. METTL3 promotes IL-1beta-induced degeneration of endplate chondrocytes by driving m6A-dependent maturation of miR-126-5p. J Cell Mol Med. 2020;24(23):14013–25. https://doi.org/10.1111/jcmm.16012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262

Article 

Comments (0)

No login
gif