Alesi S, Ee C, Moran LJ, Rao V, Mousa A. Nutritional supplements and complementary therapies in polycystic ovary syndrome. Adv Nutr. 2022;13(4):1243–66. https://doi.org/10.1093/advances/nmab141
Article CAS PubMed Google Scholar
Sadeghi HM, Adeli I, Calina D, et al. Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing. Int J Mol Sci. 2022;23(2):583. https://doi.org/10.3390/ijms23020583
Article CAS PubMed PubMed Central Google Scholar
Joham AE, Norman RJ, Stener-Victorin E, et al. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022;10(9):668–80. https://doi.org/10.1016/S2213-8587(22)00163-2
Article CAS PubMed Google Scholar
Mimouni NEH, Giacobini P. Polycystic ovary syndrome (PCOS): progress towards a better understanding and treatment of the syndrome. C R Biol. 2024;347:19–25. https://doi.org/10.5802/crbiol.147
Xiang Y, Wang H, Ding H, et al. Hyperandrogenism drives ovarian inflammation and pyroptosis: a possible pathogenesis of PCOS follicular dysplasia. Int Immunopharmacol. 2023;125(Pt A):111141. https://doi.org/10.1016/j.intimp.2023.111141
Tan W, Dai F, Yang D, et al. MiR-93-5p promotes granulosa cell apoptosis and ferroptosis by the NF-kB signaling pathway in polycystic ovary syndrome. Front Immunol. 2022;13:967151. https://doi.org/10.3389/fimmu.2022.967151
Article CAS PubMed PubMed Central Google Scholar
Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310–29. https://doi.org/10.7150/thno.71086
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Xie X, Ma Y, et al. Cyproterone acetate mediates IRE1alpha signaling pathway to alleviate pyroptosis of ovarian granulosa cells induced by hyperandrogen. Biology (Basel). 2022;11(12):1761. https://doi.org/10.3390/biology11121761
Article CAS PubMed Google Scholar
Liu CX, Chen LL. Circular rnas: characterization, cellular roles, and applications. Cell. 2022;185(12):2016–34. https://doi.org/10.1016/j.cell.2022.04.021
Article CAS PubMed Google Scholar
Xu L, Xiong F, Bai Y, et al. Circ_0043532 regulates miR-182/SGK3 axis to promote granulosa cell progression in polycystic ovary syndrome. Reprod Biol Endocrinol. 2021;19(1):167. https://doi.org/10.1186/s12958-021-00839-5
Article CAS PubMed PubMed Central Google Scholar
Xu X, Guan R, Gong K, Xie H, Shi L. Circ_FURIN knockdown assuages testosterone-induced human ovarian granulosa-like tumor cell disorders by sponging miR-423-5p to reduce MTM1 expression in polycystic ovary syndrome. Reprod Biol Endocrinol. 2022;20(1):32. https://doi.org/10.1186/s12958-022-00891-9
Article CAS PubMed PubMed Central Google Scholar
Zhao C, Zhou Y, Shen X, et al. Circular RNA expression profiling in the fetal side of placenta from maternal polycystic ovary syndrome and circ_0023942 inhibits the proliferation of human ovarian granulosa cell. Arch Gynecol Obstet. 2020;301(4):963–71. https://doi.org/10.1007/s00404-020-05495-5
Article CAS PubMed Google Scholar
Li M, Zeng Z, Zhang A, Ye Q, Su S, Xia T. WGCNA analysis identifies polycystic ovary syndrome-associated circular RNAs that interact with RNA-binding proteins and sponge MiRNAs. Int J Gen Med. 2021;14:8737–51. https://doi.org/10.2147/IJGM.S335108
Article CAS PubMed PubMed Central Google Scholar
Jiang P, Li X, Shen Y, et al. CircRNA-Phf21a_0002 promotes pyroptosis to aggravate hepatic ischemia/ reperfusion injury by sponging let-7b-5p. Heliyon. 2024;10(16):e34385. https://doi.org/10.1016/j.heliyon.2024.e34385
Article CAS PubMed PubMed Central Google Scholar
Wang B, Yu X, Chen T, et al. CircRNA-SCAF8 promotes vascular endothelial cell pyroptosis by regulating the miR-93-5p/TXNIP axis. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023;52(4):473–84. https://doi.org/10.3724/zdxbyxb-2023-0091
Article CAS PubMed Google Scholar
Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23(13):7167. https://doi.org/10.3390/ijms23137167
Article CAS PubMed PubMed Central Google Scholar
Udesen PB, Sorensen AE, Svendsen R, et al. Circulating MiRNAs in women with polycystic ovary syndrome: a longitudinal cohort study. Cells. 2023;12(7):983. https://doi.org/10.3390/cells12070983
Article CAS PubMed PubMed Central Google Scholar
Yao Y, Hu S, Zhang C, et al. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis. Int Immunopharmacol. 2022;105:108582. https://doi.org/10.1016/j.intimp.2022.108582
Article CAS PubMed Google Scholar
Zhao X, Zhong Y, Wang X, Shen J, An W. Advances in circular RNA and its applications. Int J Med Sci. 2022;19(6):975–85. https://doi.org/10.7150/ijms.71840
Article CAS PubMed PubMed Central Google Scholar
Yuksel H, Ocalan M, Yilmaz O. E-Cadherin: an important functional molecule at respiratory barrier between defence and dysfunction. Front Physiol. 2021;12:720227. https://doi.org/10.3389/fphys.2021.720227
Article PubMed PubMed Central Google Scholar
Zubrzycka A, Migdalska-Sek M, Jedrzejczyk S, Brzezianska-Lasota E. Assessment of BMP7, SMAD4, and CDH1 expression profile and regulatory miRNA-542-3p in eutopic and ectopic endometrium of women with endometriosis. Int J Mol Sci. 2023;24(7):6637. https://doi.org/10.3390/ijms24076637
Article CAS PubMed PubMed Central Google Scholar
Yu SL, Jeong DU, Noh EJ, et al. Exosomal miR-205-5p improves endometrial receptivity by upregulating E-Cadherin expression through ZEB1 inhibition. Int J Mol Sci. 2023;24(20):15149. https://doi.org/10.3390/ijms242015149
Article CAS PubMed PubMed Central Google Scholar
Salilew-Wondim D, Wang Q, Tesfaye D, et al. Polycystic ovarian syndrome is accompanied by repression of gene signatures associated with biosynthesis and metabolism of steroids, cholesterol and lipids. J Ovarian Res. 2015;8:24. https://doi.org/10.1186/s13048-015-0151-5
Article CAS PubMed PubMed Central Google Scholar
Bai S, Xiong X, Tang B, et al. hsa-miR-199b-3p prevents the epithelial-mesenchymal transition and dysfunction of the renal tubule by regulating E-cadherin through targeting KDM6A in diabetic nephropathy. Oxid Med Cell Longev. 2021;2021:8814163. https://doi.org/10.1155/2021/8814163
Article CAS PubMed PubMed Central Google Scholar
Tang B, Li W, Ji TT, et al. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals. J Cell Mol Med. 2020;24(15):8779–88. https://doi.org/10.1111/jcmm.15513
Article CAS PubMed PubMed Central Google Scholar
Xiao L, Zhao Q, Hu B, Wang J, Liu C, Xu H. METTL3 promotes IL-1beta-induced degeneration of endplate chondrocytes by driving m6A-dependent maturation of miR-126-5p. J Cell Mol Med. 2020;24(23):14013–25. https://doi.org/10.1111/jcmm.16012
Article CAS PubMed PubMed Central Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262
Comments (0)