Devesa-Peiro A, Sebastian-Leon P, Garcia-Garcia F, Arnau V, Aleman A, Pellicer A, et al. Uterine disorders affecting female fertility: what are the molecular functions altered in endometrium? Fertil Steril. 2020;113:1261–74. https://doi.org/10.1016/j.fertnstert.2020.01.025.
Article CAS PubMed Google Scholar
Zhao J, Huang B, Li N, Wang X, Xu B, Li Y. Relationship between advanced maternal age and decline of endometrial receptivity: a systematic review and meta-analysis. Aging (Albany NY). 2023;15:2460–72. https://doi.org/10.18632/aging.204555.
Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS ONE. 2010;5:e10287. https://doi.org/10.1371/journal.pone.0010287.
Article CAS PubMed PubMed Central Google Scholar
Lédée N, Munaut C, Aubert J, Sérazin V, Rahmati M, Chaouat G, et al. Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. J Pathol. 2011;225:554–64. https://doi.org/10.1002/path.2948.
Tamura I, Doi-Tanaka Y, Takasaki A, Shimamura K, Yoneda T, Takasaki H, et al. High incidence of decidualization failure in infertile women. Reprod Med Biol. 2024;23:e12580. https://doi.org/10.1002/rmb2.12580.
Article CAS PubMed PubMed Central Google Scholar
Deryabin PI, Borodkina AV. Stromal cell senescence contributes to impaired endometrial decidualization and defective interaction with trophoblast cells. Hum Reprod. 2022;37:1505–24. https://doi.org/10.1093/humrep/deac112.
Article CAS PubMed Google Scholar
Deng W, Cha J, Yuan J, Haraguchi H, Bartos A, Leishman E, et al. p53 coordinates decidual sestrin 2/AMPK/mTORC1 signaling to govern parturition timing. J Clin Invest. 2016;126:2941–54. https://doi.org/10.1172/JCI87715.
Article PubMed PubMed Central Google Scholar
Zhang Y, Gao R, Zhang L, Geng Y, Chen Q, Chen X, et al. AMPK/mTOR downregulated autophagy enhances aberrant endometrial decidualization in folate-deficient pregnant mice. J Cell Physiol. 2021;236:7376–89. https://doi.org/10.1002/jcp.30408.
Article CAS PubMed Google Scholar
Baek MO, Song HI, Han JS, Yoon MS. Differential regulation of mTORC1 and mTORC2 is critical for 8-Br-cAMP-induced decidualization. Exp Mol Med. 2018;50:1–11. https://doi.org/10.1038/s12276-018-0165-3.
Article CAS PubMed PubMed Central Google Scholar
Huang Y, Zhu Q, Sun Y. Glucose metabolism and endometrium decidualization. Front Endocrinol (Lausanne). 2025;16:1546335. https://doi.org/10.3389/fendo.2025.1546335.
Doi-Tanaka Y, Tamura I, Shiroshita A, Fujimura T, Shirafuta Y, Maekawa R, et al. Differential gene expression in decidualized human endometrial stromal cells induced by different stimuli. Sci Rep. 2024;14:7726. https://doi.org/10.1038/s41598-024-58065-z.
Article CAS PubMed PubMed Central Google Scholar
Murata H, Tanaka S, Okada H. The regulators of human endometrial stromal cell decidualization. Biomolecules. 2022;12:1275. https://doi.org/10.3390/biom12091275.
Article CAS PubMed PubMed Central Google Scholar
Tamura I, Maekawa R, Jozaki K, Ohkawa Y, Takagi H, Doi-Tanaka Y, et al. Transcription factor c/ebpbeta induces genome-wide H3K27ac and upregulates gene expression during decidualization of human endometrial stromal cells. Mol Cell Endocrinol. 2021;520:111085. https://doi.org/10.1016/j.mce.2020.111085.
Article CAS PubMed Google Scholar
Vasquez YM, Wang X, Wetendorf M, Franco HL, Mo Q, Wang T, et al. FOXO1 regulates uterine epithelial integrity and progesterone receptor expression critical for embryo implantation. PLoS Genet. 2018;14:e1007787. https://doi.org/10.1371/journal.pgen.1007787.
Article CAS PubMed PubMed Central Google Scholar
Adiguzel D, Celik-Ozenci C. FoxO1 is a cell-specific core transcription factor for endometrial remodeling and homeostasis during menstrual cycle and early pregnancy. Hum Reprod Update. 2021;27:570–83. https://doi.org/10.1093/humupd/dmaa060.
Article CAS PubMed Google Scholar
Lynch VJ, Brayer K, Gellersen B, Wagner GP. HoxA-11 and FOXO1A cooperate to regulate decidual prolactin expression: towards inferring the core transcriptional regulators of decidual genes. PLoS ONE. 2009;4:e6845. https://doi.org/10.1371/journal.pone.0006845.
Article CAS PubMed PubMed Central Google Scholar
Mak IY, Brosens JJ, Christian M, Hills FA, Chamley L, Regan L, White JO. Regulated expression of signal transducer and activator of transcription, Stat5, and its enhancement of PRL expression in human endometrial stromal cells in vitro. J Clin Endocrinol Metab. 2002;87:2581–8. https://doi.org/10.1210/jcem.87.6.8576.
Article CAS PubMed Google Scholar
Huang P, Deng W, Bao H, Lin Z, Liu M, Wu J, et al. SOX4 facilitates PGR protein stability and FOXO1 expression conducive for human endometrial decidualization. Elife. 2022;11:e72073. https://doi.org/10.7554/eLife.72073.
Article CAS PubMed PubMed Central Google Scholar
Lu Z, Hardt J, Kim JJ. Global analysis of genes regulated by HOXA10 in decidualization reveals a role in cell proliferation. Mol Hum Reprod. 2008;14:357–66. https://doi.org/10.1093/molehr/gan023.
Article CAS PubMed Google Scholar
Pabona JM, Simmen FA, Nikiforov MA, Zhuang D, Shankar K, Velarde MC, et al. Kruppel-like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2012;97:E376–92. https://doi.org/10.1210/jc.2011-2562.
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Zhu X, Chen J, Jiang Y, Zhang Q, Kong C, et al. Kruppel-like factor 12 is a novel negative regulator of forkhead box O1 expression: a potential role in impaired decidualization. Reprod Biol Endocrinol. 2015;13:80. https://doi.org/10.1186/s12958-015-0079-z.
Article CAS PubMed PubMed Central Google Scholar
Rubel CA, Franco HL, Jeong JW, Lydon JP, DeMayo FJ. GATA2 is expressed at critical times in the mouse uterus during pregnancy. Gene Expr Patterns. 2012;12:196–203. https://doi.org/10.1016/j.gep.2012.03.004.
Article CAS PubMed Google Scholar
Meng X, Chen C, Qian J, Cui L, Wang S. Energy metabolism and maternal-fetal tolerance working in decidualization. Front Immunol. 2023;14:1203719. https://doi.org/10.3389/fimmu.2023.1203719.
Article CAS PubMed PubMed Central Google Scholar
Stope MB, Mustea A, Sänger N, Einenkel R. Immune cell functionality during decidualization and potential clinical application. Life (Basel). 2023;13:1097. https://doi.org/10.3390/life13051097.
Article CAS PubMed Google Scholar
Wu HM, Chen LH, Hsu LT, Lai CH. Immune tolerance of embryo implantation and pregnancy: the role of human decidual stromal Cell- and embryonic-Derived extracellular vesicles. Int J Mol Sci. 2022;23:13382. https://doi.org/10.3390/ijms232113382.
Article CAS PubMed PubMed Central Google Scholar
Llorca T, Ruiz-Magaña MJ, Martinez-Aguilar R, García-Valdeavero OM, Rodríguez-Doña L, Abadia-Molina AC, et al. Decidualized human decidual stromal cells inhibit chemotaxis of activated T cells: a potential mechanism of maternal-fetal immune tolerance. Front Immunol. 2023;14:1223539. https://doi.org/10.3389/fimmu.2023.1223539.
Comments (0)