Amiya, G., Murugan, P.R., Ramaraj, K., et al.: LMGU-NET: methodological intervention for prediction of bone health for clinical recommendations. J. Supercomput. 80, 15636–15663 (2024). https://doi.org/10.1007/s11227-024-06048-2
Açıcı, K., Sümer, E., Beyaz, S.: Comparison of different machine learning approaches to detect femoral neck fractures in x-ray images. Health Technol. 11, 643–653 (2021). https://doi.org/10.1007/s12553-021-00543-9
Anu, T.C., Raman, R.: Detection of bone fracture using image processing methods. Int. J. Comput. Appl. 975, 8887 (2015)
Cheng, C.T., Ho, T.Y., Lee, T.Y., Chang, C.C., Chou, C.C., Chen, C.C., Chung, I., Liao, C.H.: Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur. Radiol. 29, 5469–5477 (2019). https://doi.org/10.1007/s00330-019-06167-y
Article PubMed PubMed Central Google Scholar
Dlshad Ahmed, K., Hawezi, R.: Detection of bone fracture based on machine learning techniques. Measurement Sens. (2023). https://doi.org/10.1016/j.measen.2023.100723
Dimililer, K.: IBFDS: intelligent bone fracture detection system. Proced. Comput. Sci. 120, 260–267 (2017). https://doi.org/10.1016/j.procs.2017.11.237
Fischer, S., Kapinos, K.A., Mulcahy, A., Pinto, L., Hayden, O., Barron, R.: Estimating the long-term functional burden of osteoporosis-related fractures. Osteoporos Int. 28(10), 2843–2851 (2017)
Article CAS PubMed Google Scholar
Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)
Khatik, I., Kadam, S.: A systematic review of bone fracture detection models using convolutional neural network approach. J Pharm. Negat. Results (2022). https://doi.org/10.47750/pnr.2022.13.s09.019
Ju, R.-Y., & Cai, W. Fracture Detection in Pediatric Wrist Trauma X-ray Images Using YOLOv8 Algorithm. Retrieved from http://arxiv.org/abs/2304.05071 (2023)
Krupinski, E.A., Berbaum, K.S., Caldwell, R.T., Schartz, K.M., Kim, J.: Long radiology workdays reduce detection and accommodation accuracy. J. Am. Coll. Radiol. 7, 698–704 (2010)
Article PubMed PubMed Central Google Scholar
Khatik, I.: A study of various bone fracture detection techniques. Int. J. Eng. Comput. Sci. (2017). https://doi.org/10.18535/ijecs/v6i5.38
Karanam, S.R., Srinivas, Y., Chakravarty, S.: A supervised approach to musculoskeletal imaging fracture detection and classification using deep learning algorithms. Comput. Assist. Method. Eng. Sci. 30(3), 269–285 (2023). https://doi.org/10.24423/cames.682
Kishor, K.: Using a half cheetah habitat for random augmentation computing. Multimed. Tools Appl. (2024). https://doi.org/10.1007/s11042-024-19084-0
Kishor, K., Shukla, A., Thakur, A. (2024). Vehicle Classification and License Number Plate Detection Using Deep Learning. In: Sharma, D.K., Peng, SL., Sharma, R., Jeon, G. (eds) Micro-Electronics and Telecommunication Engineering. ICMETE 2023. Lecture Notes in Networks and Systems, vol 894. (2024) Springer, Singapore. https://doi.org/10.1007/978-981-99-9562-2_5
Kim, D.H., MacKinnon, T.: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin. Radiol. 73, 439–445 (2018). https://doi.org/10.1016/j.crad.2017.11.015
Article CAS PubMed Google Scholar
Lindsey, R., Daluiski, A., Chopra, S., Lachapelle, A., Mozer, M., Sicular, S., Hanel, D., Gardner, M., Gupta, A., Hotchkiss, R., et al.: Deep neural network improves fracture detection by clinicians. Proc. Natl. Acad. Sci. u.s.a. 115, 11591–11596 (2018)
Article CAS PubMed PubMed Central Google Scholar
Lydia, L., Vijaya Kumar, K., Narasimha Rao, G., Laxmi Lydia, E., & Vijaya Kumar, D. Analysis of Advanced Deep Learning Approaches for the Multiple Bone Fracture detection. (2023) https://doi.org/10.21203/rs.3.rs-2995613/v1
Meena, T., Roy, S.: Bone fracture detection using deep supervised learning from radiological images: a paradigm shift. Diagnostics (2022). https://doi.org/10.3390/diagnostics12102420
Article PubMed PubMed Central Google Scholar
Mehta, R., Pareek, P., Jayaswal, R., Patil, S., Vyas, K.: A bone fracture detection using ai-based techniques. Scalable Comput. 24(2), 161–171 (2023). https://doi.org/10.12694/scpe.v24i2.2081
Moon, G., Kim, S., Kim, W., Kim, Y., Jeong, Y., Choi, H.S.: Computer aided facial bone fracture diagnosis (CA-FBFD) system based on object detection model. IEEE Access 10, 79061–79070 (2022). https://doi.org/10.1109/ACCESS.2022.3192389
Majkowska, A., Mittal, S., Steiner, D.F., Reicher, J.J., McKinney, S.M., Duggan, G.E., Eswaran, K., Chen, P.-H.C., Liu, Y., Kalidindi, S.R., et al.: Chest radiograph interpretation with deep learning models: Assessment with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology 294, 421–431 (2020). https://doi.org/10.1148/radiol.2019191293
Oyeranmi, A., Ronke, B., Mohammed, R., Edwin, A.: Detection of fracture bones in X-ray images categorization. J. Adv. Math. Comput. Sci. (2020). https://doi.org/10.9734/jamcs/2020/v35i430265
Olczak, J., Fahlberg, N., Maki, A., Razavian, A.S., Jilert, A., Stark, A., Sköldenberg, O., Gordon, M.: Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop. 88, 581–586 (2017). https://doi.org/10.1080/17453674.2017.1344459
Article PubMed PubMed Central Google Scholar
Peruri, S., Vamsi, J., Kattubadi, D., &Prudhvi, G. Bone fracture detection using Image Processing Radar detection using ultrasonic sensor View project Automatic street light system using IOT || Arduino and buzzer View project. Retrieved from www.ijsdr.org (2020)
Pranata, Y.D., Wang, K.C., Wang, J.C., Idram, I., Lai, J.Y., Liu, J.W., Hsieh, I.-H.: Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images. Comput. Methods Programs Biomed. 171, 27–37 (2019). https://doi.org/10.1016/j.cmpb.2019.02.006
Rayan, J.C., Reddy, N., Kan, J.H., Zhang, W., Annapragada, A.: Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making. Radiol. Artif. Intell. 1, e180015 (2019). https://doi.org/10.1148/ryai.2019180015
Article PubMed PubMed Central Google Scholar
Svedbom A, Hernlund E, Ivergård M, Compston J, Cooper C, Stenmark J, EU Review Panel of IOF. Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos 2013 11;8(1-2):137.
Sharma A., Jha N., Kishor K. Predict COVID-19 with Chest X-ray. In: Gupta D., Polkowski Z., Khanna A., Bhattacharyya S., Castillo O. (eds) Proceedings of Data Analytics and Management. Lecture Notes on Data Engineering and Communications Technologies, vol 90. (2022) Springer, Singapore. https://doi.org/10.1007/978-981-16-6289-8_16.
Santos, K.C., Fernandes, C.A., Costa, J.R.: Feasibility of bone fracture detection using microwave imaging. IEEE Open J. Ant. Propag. 3, 836–847 (2022). https://doi.org/10.1109/OJAP.2022.3194217
Tomita, N., Cheung, Y.Y., Hassanpour, S.: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med. 98, 8–15 (2018). https://doi.org/10.1016/j.compbiomed.2018.05.011
Vironicka, S., &Sathiaseelan, J. G. R. (n.d.). International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING Framework for Classifying Long Bone Detection Using Image Processing Techniques. In Original Research Paper International Journal of Intelligent Systems and Applications in Engineering IJISAE (Vol. 2022, Issue 1s). Retrieved from www.ijisae.org
Verma, R. K., Kishor, K., & Jha, S. K. Big Data Analytics in Bioinformatics and Healthcare. In R. Khan, I. Kumar, & P. Praveen (Eds.), Applications of Parallel Data Processing for Biomedical Imaging (pp. 25–43). IGI Global. (2024) https://doi.org/10.4018/979-8-3693-2426-4.ch002
Verma, R. K. & Kishor, K. Image Processing Applications in Agriculture With the Help of AI. In M. Khan, R. Khan, P. Praveen, A. Verma, & M. Panda (Eds.), Infrastructure Possibilities and Human-Centered Approaches With Industry 5.0 (pp. 162–181). IGI Global. (2024) https://doi.org/10.4018/979-8-3693-0782-3.ch010.
Wang, X., Xu, Z., Tong, Y., Xia, L., Jie, B., Ding, P., Bai, H., Zhang, Y., He, Y.: Detection and classification of mandibular fracture on CT scan using deep convolutional neural network. Clin. Oral Investig. 26, 4593–4601 (2022). https://doi.org/10.1007/s00784-022-04427-8
Wah Myint, W.: Analysis on leg bone fracture detection and classification using X-ray images. Mach. Learn. Res. 3(3), 49 (2018). https://doi.org/10.11648/j.mlr.20180303.11
Yadav, D.P., Sharma, A., Athithan, S., Bhola, A., Sharma, B., Dhaou, I.B.: Hybrid SFNet model for bone fracture detection and classification using ML/DL. Sensors (2022). https://doi.org/10.3390/s22155823
Article PubMed PubMed Central Google Scholar
Yadav, D. P., &Rathor, S. Bone Fracture Detection and Classification using Deep Learning Approach. 2020 International Conference on Power Electronics and IoT Applications in Renewable Energy and Its Control, PARC 2020, 282–285. (2020) https://doi.org/10.1109/PARC49193.2020.236611
Yang, A. Y., & Cheng, L. Long-Bone Fracture Detection using Artificial Neural Networks based on Line Features of X-ray Images. Retrieved from http://arxiv.org/abs/1902.07458 (2019)
Zeelan Basha, C.M.A.K., Padmaja, T.M., Balaji, G.N.: An effective and reliable computer automated technique for bone fracture detection. EAI Endorsed Trans. Pervasive Health Technol. (2019). https://doi.org/10.4108/eai.13-7-2018.162402
Comments (0)