Ahern, S., Hopper, I., Evans, S.M.: Clinical quality registries for clinician-level reporting: strengths and limitations. Med. J. Aust. 206(10), 427–429 (2017)
Austin, P.C.: A comparison of bayesian methods for profiling hospital performance. Med. Decis. Making 22(2), 163–172 (2002). https://doi.org/10.1177/0272989X0202200213
Austin, P.C., Naylor, C.D., Tu, J.V.: A comparison of a Bayesian vs a frequentist method for profiling hospital performance. J. Eval. Clin. Pract. 7(1), 35–45 (2001). https://doi.org/10.1046/j.1365-2753.2001.00261.x
Article CAS PubMed Google Scholar
Australian Commission on Safety and Quality in Healthcare (ACSQHC): Australian Register of Clinical Registries. https://www.safetyandquality.gov.au/publications-and-resources/australian-register-clinical-registries (2022). Accessed 1 November 2022.
Behrendt, K., Groene, O.: Mechanisms and effects of public reporting of surgeon outcomes: a systematic review of the literature. Health Policy 120(10), 1151–1161 (2016). https://doi.org/10.1016/j.healthpol.2016.08.003
Blackmore, A.R., Leonard, J., Madayag, R., Bourg, P.W.: Using the trauma quality improvement program metrics data to enhance clinical practice. J. Trauma Nurs. 26(3), 121–127 (2019). https://doi.org/10.1097/JTN.0000000000000436
Blumenthal, S.: The use of clinical registries in the United States: a landscape survey. eGEMS 5(1), 26–26 (2017). https://doi.org/10.5334/egems.248
Article PubMed PubMed Central Google Scholar
Brown, W.A., Ahern, S., MacCormick, A.D., Reilly, J.R., Smith, J.A., Watters, D.A.: Clinical quality registries: urgent reform is required to enable best practice and best care. ANZ J. Surg. 92(1–2), 23–26 (2022). https://doi.org/10.1111/ans.17438
Dimick, J.B., Ghaferi, A.A., Osborne, N.H., Ko, C.Y., Hall, B.L.: Reliability adjustment for reporting hospital outcomes with surgery. Ann. Surg. 255(4), 703–707 (2012). https://doi.org/10.1097/SLA.0b013e31824b46ff
Eijkenaar, F., van Vliet, R.C.J.A.: Performance profiling in primary care: does the choice of statistical model matter? Med. Decis. Making 34(2), 192–205 (2014). https://doi.org/10.1177/0272989X13498825
Endo, H., Ichihara, N., Miyata, H., Uchino, S., Hashimoto, S., Aoki, Y., Hashiba, E., Hatakeyama, J., Hayakawa, K., Irie, H., Kawasaki, T., Kumasawa, J., Kurosawa, H., Nakamura, T., Ohbe, H., Okamoto, H., Shigemitsu, H., Tagami, T., Takaki, S., Takimoto, K., Uchida, M.: Development and validation of the predictive risk of death model for adult patients admitted to intensive care units in Japan: an approach to improve the accuracy of healthcare quality measures. J. Intensive Care 9(1), 18 (2021). https://doi.org/10.1186/s40560-021-00533-z
Article PubMed PubMed Central Google Scholar
Evans, S.M., Bohensky, M., Cameron, P.A., McNeil, J.: A survey of Australian clinical registries: can quality of care be measured? Intern. Med. J. 41(1a), 42–48 (2011a). https://doi.org/10.1111/j.1445-5994.2009.02068.x
Article CAS PubMed Google Scholar
Evans, S.M., Scott, I.A., Johnson, N.P., Cameron, P.A., McNeil, J.J.: Development of clinical-quality registries in Australia: the way forward. Med. J. Aust. 194(7), 360–363 (2011b). https://doi.org/10.5694/j.1326-5377.2011.tb03007.x
Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F., Soriano, J.: Semiparametric Bayesian models for clustering and classification in the presence of unbalanced in-hospital survival. J. r. Stat. Soc. C 63(1), 25–46 (2014). https://doi.org/10.1111/rssc.12021
Hamilton, B.H., Hall, B.L., Huffman, K.M., Zhou, L., Richards, K.E., Cohen, M.E., Paruch, J.L., Ko, C.Y.: Profiling individual surgeon performance using information from a high-quality clinical registry: opportunities and limitations. J. Am. Coll. Surg. 221(5), 901–913 (2015). https://doi.org/10.1016/j.jamcollsurg.2015.07.454
Hansen, J., Ahern, S., Earnest, A.: Evaluations of statistical methods for outlier detection when benchmarking in clinical registries: a systematic review. BMJ Open 13(7), e069130 (2023). https://doi.org/10.1136/bmjopen-2022-069130
Article PubMed PubMed Central Google Scholar
Hess, C.N., Rao, S.V., McCoy, L.A., Neely, M.L., Peterson, E.D., Singh, M., Spertus, J.A., Krone, R.J., Weaver, W.D.: Identification of hospital outliers in bleeding complications after percutaneous coronary intervention. Circ. Cardiovasc. Qual. Outcomes 8(1), 15–22 (2015). https://doi.org/10.1161/CIRCOUTCOMES.113.000749
Hoque, D.M.E., Kumari, V., Hoque, M., Ruseckaite, R., Romero, L., Evans, S.M.: Impact of clinical registries on quality of patient care and clinical outcomes: a systematic review. PLoS One 12(9), e0183667 (2017). https://doi.org/10.1371/journal.pone.0183667
Article CAS PubMed PubMed Central Google Scholar
Ieva, F., Paganoni, A.M.: Detecting and visualizing outliers in provider profiling via funnel plots and mixed effect models. Health Care Manag. Sci. 18(2), 166–172 (2015). https://doi.org/10.1007/s10729-013-9264-9
Jones, H.E., Ohlssen, D.I., Spiegelhalter, D.J.: Use of the false discovery rate when comparing multiple health care providers. J. Clin. Epidemiol. 61(3), 232–240 (2008). https://doi.org/10.1016/j.jclinepi.2007.04.017
Kalbfleisch, J.D., Wolfe, R.A.: On monitoring outcomes of medical providers. Stat. Biosci. 5(2), 286–302 (2013). https://doi.org/10.1007/s12561-013-9093-x
Kasza, J., Moran, J.L., Solomon, P.J.: Evaluating the performance of Australian and New Zealand intensive care units in 2009 and 2010. Stat. Med. 32(21), 3720–3736 (2013). https://doi.org/10.1002/sim.5779
Article CAS PubMed Google Scholar
Kasza, J., Polkinghorne, K.R., Wolfe, R., McDonald, S.P., Marshall, M.R.: Comparing dialysis centre mortality outcomes across Australia and New Zealand: identifying unusually performing centres 2008–2013. BMC Health Serv. Res. 18, 1007 (2018). https://doi.org/10.1186/s12913-018-3832-0
Article PubMed PubMed Central Google Scholar
Lecky, F., Woodford, M., Edwards, A., Bouamra, O., Coats, T.: Trauma scoring systems and databases. Br. J. Anaesth. 113(2), 286–294 (2014). https://doi.org/10.1093/bja/aeu242
Article CAS PubMed Google Scholar
Longford, N.T.: Decision theory for comparing institutions. Stat. Med. 37(3), 457–472 (2018). https://doi.org/10.1002/sim.7525
MacKenzie, T.A.P., Grunkemeier, G.L.P., Grunwald, G.K.P., O’Malley, A.J.P., Bohn, C.M.S., Wu, Y.P., Malenka, D.J.M.D.: A primer on using shrinkage to compare in-hospital mortality between centers. Ann. Thorac. Surg. 99(3), 757–761 (2015). https://doi.org/10.1016/j.athoracsur.2014.11.039
Manktelow, B.N., Seaton, S.E., Evans, T.A.: Funnel plot control limits to identify poorly performing healthcare providers when there is uncertainty in the value of the benchmark. Stat. Methods Med. Res. 25(6), 2670–2684 (2016). https://doi.org/10.1177/0962280214530281
McNeil, J.J., Evans, S.M., Johnson, N.P., Cameron, P.A.: Clinical-quality registries: their role in quality improvement. Med. J. Aust. 192(5), 244–245 (2010). https://doi.org/10.5694/j.1326-5377.2010.tb03499.x
Moore, L., Hanley, J.A., Turgeon, A.F., Lavoie, A.: Evaluating the performance of trauma centers: hierarchical modeling should be used. J. Trauma 69(5), 1132–1137 (2010). https://doi.org/10.1097/TA.0b013e3181cc8449
Moran, J.L., Solomon, P.J.: Fixed effects modelling for provider mortality outcomes: analysis of the Australia and New Zealand Intensive Care Society (ANZICS) adult patient data-base. PLoS One 9(7), e102297 (2014). https://doi.org/10.1371/journal.pone.0102297
Article CAS PubMed PubMed Central Google Scholar
Morris, T.P., White, I.R., Crowther, M.J.: Using simulation studies to evaluate statistical methods. Stat. Med. 38(11), 2074–2102 (2019). https://doi.org/10.1002/sim.8086
Comments (0)