A new GPU-based Monte Carlo code for helium ion therapy

Wilson RR (1946) Radiological Use of Fast Protons. Radiology 47(5):487–491

Article  PubMed  CAS  Google Scholar 

Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Physics—rev Mod Phys 82: p:383–425

Article  Google Scholar 

Fuchs H et al (2015) Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion. Med Phys 42(9):5157–5166

Article  PubMed  CAS  Google Scholar 

Grün R et al (2015) Assessment of potential advantages of relevant ions for particle therapy: a model based study. Med Phys 42(2):1037–1047

Article  PubMed  Google Scholar 

Mairani A et al (2022) Roadmap: helium ion therapy. Phys Med Biol 67(15):15–TR2

Article  Google Scholar 

Knäusl B et al (2016) Can particle beam therapy be improved using helium ions?—A planning study focusing on pediatric patients. Acta Oncol 55: p:751–759

Article  Google Scholar 

Blakely EA et al (1984) Heavy-Ion Radiobiology: Cellular Studies. Adv Radiat Biol 11: p:295–389

Article  Google Scholar 

Linstadt D et al (1988) Comparison of helium-ion radiation therapy and split-course megavoltage irradiation for unresectable adenocarcinoma of the pancreas. Final report of a Northern California Oncology Group randomized prospective clinical trial. Radiology 168(1):261–264

Article  PubMed  CAS  Google Scholar 

Kaplan ID, Castro JR, Phillips TL (1994) Helium charged particle radiotherapy for meningioma: Experience at UCLBL. Int J Radiat Oncol 28(1):257–261

Article  CAS  Google Scholar 

Orecchia R et al (1998) Particle beam therapy (hadrontherapy): basis for interest and clinical experience. Eur J Cancer 34(4):459–468

Article  PubMed  CAS  Google Scholar 

Tessonnier T et al (2017) Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements. Phys Med Biol 62(16):6784–6803

Article  PubMed  CAS  Google Scholar 

Tessonnier T et al (2017) Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center. Phys Med Biol 62(16):6579–6594

Article  PubMed  CAS  Google Scholar 

Mein S et al (2019) Dosimetric validation of Monte Carlo and analytical dose engines with raster-scanning (1)H, (4)He, (12)C, and (16)O ion-beams using an anthropomorphic phantom. Phys Medica 64: p:123–131

Article  Google Scholar 

Besuglow J et al (2022) The Evolution of Lateral Dose Distributions of Helium Ion Beams in Air: From Measurement and Modeling to Their Impact on Treatment Planning. Front Phys 9: p:751

Google Scholar 

Tessonnier T et al (2023) Commissioning of Helium Ion Therapy and the First Patient Treatment With Active Beam Delivery. Int J Radiat Oncol 116(4):935–948

Article  Google Scholar 

Mein S et al (2018) Fast robust dose calculation on GPU for high-precision 1H, 4He, 12C and 16O ion therapy: the FRoG platform. Sci Rep 8(1):14829

Article  PubMed  PubMed Central  Google Scholar 

Fuchs H et al (2012) A pencil beam algorithm for helium ion beam therapy. Med Phys 39(11):6726–6737

Article  PubMed  CAS  Google Scholar 

Taylor PA, Kry SF, Followill DS (2017) Pencil Beam Algorithms Are Unsuitable for Proton Dose Calculations in Lung. Int J Radiat Oncol 99(3):750–756

Article  Google Scholar 

Ali I, Ahmad S (2013) Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance. Med Dosim 38(3):255–261

Article  PubMed  Google Scholar 

Agostinelli S et al (2003) Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated. Equipment 506(3):250–303

CAS  Google Scholar 

Böhlen TT et al (2014) The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl Data Sheets 120:211–214

Article  Google Scholar 

Perl J et al (2012) TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys 39(11):6818–6837

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lysakovski P et al (2023) Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay. Med Phys 50(4):2510–2524

Article  PubMed  CAS  Google Scholar 

Pratx G, Xing L (2011) GPU computing in medical physics: a review. Med Phys 38(5):2685–2697

Article  PubMed  Google Scholar 

Schiavi A et al (2017) Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy. Phys Med Biol 62(18):7482

Article  PubMed  CAS  Google Scholar 

Franciosini G et al (2023) GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications. Phys Med Biol 68(4):44001

Article  CAS  Google Scholar 

Xu XG et al (2015) ARCHER, a new Monte Carlo software tool for emerging heterogeneous computing environments. Ann Nucl Energy 82: p:2–9

Article  Google Scholar 

Li S et al (2024) A GPU-based fast Monte Carlo code that supports proton transport in magnetic field for radiation therapy. J Applied Clin Med Phys 25(e14208):1

Google Scholar 

Jia X et al (2012) GPU-based fast Monte Carlo dose calculation for proton therapy. Phys Med Biol 57(23):7783–7797

Article  PubMed  PubMed Central  Google Scholar 

Peng Z et al (2022) Development of a GPU-accelerated Monte Carlo dose calculation module for nuclear medicine, ARCHER-NM: demonstration for a PET/CT imaging procedure. Phys Med Biol 67(6):6–NT2

Article  Google Scholar 

Cheng B et al (2023) Development and clinical application of a GPU-based Monte Carlo dose verification module and software for 1.5 T MR-LINAC. Med Phys 50(5):3172–3183

Article  PubMed  Google Scholar 

Uwe S, Eros P, Antony L (1996) The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol 41(1):111

Article  Google Scholar 

(2023) Geant4 Collaboration, Geant4 Physics Reference Manual. https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf

Fippel M, Soukup M (2004) A Monte Carlo dose calculation algorithm for proton therapy. Med Phys 31(8):2263–2273

Article  PubMed  Google Scholar 

Urb, L, A multiple scattering model in Geant4. 2006. Preprint CERN-OPEN-2006-077

Tseung WCH, Ma J, Beltran C (2015) A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions. Med Phys 42(6):2967–2978

Article  Google Scholar 

Qin N et al (2017) Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy. Phys Med Biol 62(9):3682

Article  PubMed  PubMed Central  CAS  Google Scholar 

Peng Z et al (2019) MCDNet—A Denoising Convolutional Neural Network to Accelerate Monte Carlo Radiation Transport Simulations: A Proof of Principle With Patient Dose From X‑Ray CT Imaging. IEEE Access 7: p:76680–76689

Article  Google Scholar 

Javaid U et al (2019) Mitigating inherent noise in Monte Carlo dose distributions using dilated U‑Net. Med Phys 46(12):5790–5798

Article  PubMed  Google Scholar 

Bai T et al (2021) Deep Dose Plugin: Towards Real-time Monte Carlo Dose Calculation Through a Deep Learning–based Denoising Algorithm. Mach Learn Sci Technol 2(2):25033

Article  Google Scholar 

Zhang X et

Comments (0)

No login
gif