A.M. Abdelmoniem, M. Canini, Towards mitigating device heterogeneity in federated learning via adaptive model quantization, in Proceedings of the 1st Workshop on Machine Learning and Systems (2021), pp. 96–103
K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H.B. McMahan et al., Towards federated learning at scale: system design. arXiv preprint arXiv:1902.01046 (2019)
C. Brandon, T.P. Davis, Internet of Things and Data Analytics Handbook (Wiley, Hoboken, New Jersey 2017)
Y.J. Cho, J. Wang, T. Chiruvolu, G. Joshi, Personalized federated learning for heterogeneous clients with clustered knowledge transfer. arXiv preprint arXiv:2109.08119 (2021)
Y. Deng, M.M. Kamani, M. Mahdavi, Adaptive personalized federated learning. arXiv preprint arXiv:2003.13461 (2020)
A. Ghosh, J. Chung, D. Yin, K. Ramchandran, An efficient framework for clustered federated learning. Adv. Neural Inf. Process. Syst. 33, 19586–19597 (2020)
W. Huang, M. Ye, B. Du, Learn from others and be yourself in heterogeneous federated learning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022), pp. 10143–10153
A. Imteaj, M.H. Amini, Leveraging asynchronous federated learning to predict customers financial distress. Intel. Syst. Appl. 14, 200064 (2022)
A. Imteaj, U. Thakker, S. Wang, J. Li, M.H. Amini, A survey on federated learning for resource-constrained IoT devices. IEEE Internet Things J. 9(1), 1–24 (2021)
Y. Jiang, J. Konečnỳ, K. Rush, S. Kannan, Improving federated learning personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488 (2019)
P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis, A.N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)
J. Konečnỳ, H.B. McMahan, D. Ramage, P. Richtárik et al., Federated learning: Strategies for improving communication efficiency, in NIPS (2016), pp. 4203–4211
A. Kundu, P. Yu, L. Wynter, S.H. Lim, Robustness and personalization in federated learning: a unified approach via regularization, in 2022 IEEE International Conference on Edge Computing and Communications (EDGE) (IEEE, 2022), pp. 1–11
Y. Laguel, K. Pillutla, J. Malick, Z. Harchaoui, Device heterogeneity in federated learning: a superquantile approach. arXiv preprint arXiv:2002.11223 (2020)
Q. Li, C. Zhao, P. Abbeel, Fair and secure multi-party machine learning, in Proceedings of the 37th International Conference on Machine Learning (ICML’20) (2020)
Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, B. He, A survey on federated learning systems: vision, hype and reality for data privacy and protection. IEEE Trans. Knowl. Data Eng. 35(4), 3347–3366 (2021)
T. Li, A.K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, V. Smith, Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)
Y. Li, W. Zhou, H. Wang, H. Mi, T.M. Hospedales, Fedh2l: Federated learning with model and statistical heterogeneity. arXiv preprint arXiv:2101.11296 (2021)
W.Y.B. Lim, N.C. Luong, D.T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, C. Miao, Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(3), 2031–2063 (2020)
H. Liu, W. Yu, X. Zhang, G. Hu, H. Zhang, L. He, T.-S. Chua, Federated recommendation system: privacy challenges and solutions. arXiv preprint arXiv:2003.10075 (2020)
Y. Mao, C. You, J. Zhang, K. Huang, A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)
O. Marfoq, G. Neglia, A. Bellet, L. Kameni, R. Vidal, Federated multi-task learning under a mixture of distributions. Adv. Neural Inf. Process. Syst. 34, 15434–15447 (2021)
B. McMahan, E. Moore, D. Ramage, S. Hampson et al., Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016)
H.B. McMahan, E. Moore, D. Ramage et al., Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2017)
E. Moore, A. Imteaj, S. Rezapour, M.H. Amini, A survey on secure and private federated learning using blockchain: theory and application in resource-constrained computing. IEEE Internet Things J. 10, 21943–21947 (2023)
V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey on security and privacy of federated learning. Future Gen. Comput. Syst. 115, 619–640 (2021)
D.C. Nguyen, M. Ding, Q.-V. Pham, P.N. Pathirana, L.B. Le, A. Seneviratne, J. Li, D. Niyato, H.V. Poor, Federated learning meets blockchain in edge computing: opportunities and challenges. IEEE Internet Things J. 8(16), 12806–12825 (2021)
T. Nishio, R. Yonetani, Client selection for federated learning with heterogeneous resources in mobile edge, in ICC 2019-2019 IEEE International Conference on Communications (ICC) (IEEE, 2019), pp. 1–7
S.K. Pye, H. Yu, Personalised federated learning: a combinational approach. arXiv preprint arXiv:2108.09618 (2021)
N. Shi, F. Lai, R. Al Kontar, M. Chowdhury, Fed-ensemble: ensemble models in federated learning for improved generalization and uncertainty quantification. IEEE Trans. Autom. Sci. Eng. 21, 2793–2798 (2023)
R. Shokri, V. Shmatikov, Privacy-preserving deep learning, in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (2015), pp. 1310–1321
V. Smith, C.-K. Chiang, M. Sanjabi, A.S. Talwalkar, Federated multi-task learning. Adv. Neural Inf. Process. Syst. 30, 1–4 (2017)
X. Su, W. Zhang, R. Lu, X. (Sherman) Shen, Heterogeneity and diversity in distributed sensor networks for environmental monitoring: challenges, opportunities, and trends. IEEE Internet Things J. 6(5), 9089–9102 (2019)
B. Sun, H. Huo, Y. Yang, B. Bai, Partialfed: cross-domain personalized federated learning via partial initialization. Adv. Neural Inf. Process. Syst. 34, 23309–23320 (2021)
A.Z. Tan, H. Yu, L. Cui, Q. Yang, Towards personalized federated learning. IEEE Trans. Neural Netw. Learn. Syst. 34, 9588–9596 (2022)
Z. Tang, X. Chu, R.Y. Ran, S. Lee, S. Shi, Y. Zhang, Y. Wang, A.Q. Liang, S. Avestimehr, C. He, Fedml parrot: a scalable federated learning system via heterogeneity-aware scheduling on sequential and hierarchical training. arXiv preprint arXiv:2303.01778 (2023)
n.d. Tran, P.N. Nguyen, T.H. Nguyen, P. Le Nguyen, T.T. Nguyen, Y. Ji et al., Enhancing the generalization of personalized federated learning with multi-head model and ensemble voting, in 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (IEEE, 2024), pp. 205–216
J. Wang, Q. Liu, H. Liang, G. Joshi, H.V. Poor, Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural Inf. Process. Syst. 33, 7611–7623 (2020)
S. Wang, D. Tu, P. Khedekar, A. Parameswaran, Federated learning for healthcare informatics. arXiv preprint arXiv:1911.06270 (2020)
P. Xiao, S. Cheng, V. Stankovic, D. Vukobratovic, Averaging is probably not the optimum way of aggregating parameters in federated learning. Entropy 22(3), 314 (2020)
B. Xiong, X. Yang, F. Qi, C. Xu, A unified framework for multi-modal federated learning. Neurocomputing 480, 110–118 (2022)
R. Xu, Y.-J. Angela Zhang, J. Huang, Tackling privacy heterogeneity in federated learning, in 2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (2023), pp. 326–333
Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: concept and applications. ACM Trans. Intel. Syst. Technol. (TIST) 10(2), 1–19 (2019)
Q. Yang, Y. Liu, S. Cheng, T. Zhang, Y. Sun, F.-Y. Wang, Federated learning for cross-industry collaboration: opportunities and challenges. IEEE Network 34(3), 41–47 (2020)
M. Ye, X. Fang, B. Du, P.C. Yuen, D. Tao, Heterogeneous federated learning: state-of-the-art and research challenges. ACM Comput. Surv. 56(3), 1–44 (2023)
Y. Ye, S. Li, F. Liu, Y. Tang, W. Hu, Edgefed: optimized federated learning based on edge computing. IEEE Access 8, 209191–209198 (2020)
W. Yu, F. Liang, X. He, H. Zhang, K. Yang, A survey of edge computing-based designs for the industrial internet of things. Future Gen. Comput. Syst. 100, 859–876 (2019)
Comments (0)