Federated Learning for Cooperative Heterogeneous Agents

A.M. Abdelmoniem, M. Canini, Towards mitigating device heterogeneity in federated learning via adaptive model quantization, in Proceedings of the 1st Workshop on Machine Learning and Systems (2021), pp. 96–103

Google Scholar 

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H.B. McMahan et al., Towards federated learning at scale: system design. arXiv preprint arXiv:1902.01046 (2019)

Google Scholar 

C. Brandon, T.P. Davis, Internet of Things and Data Analytics Handbook (Wiley, Hoboken, New Jersey 2017)

MATH  Google Scholar 

Y.J. Cho, J. Wang, T. Chiruvolu, G. Joshi, Personalized federated learning for heterogeneous clients with clustered knowledge transfer. arXiv preprint arXiv:2109.08119 (2021)

Google Scholar 

Y. Deng, M.M. Kamani, M. Mahdavi, Adaptive personalized federated learning. arXiv preprint arXiv:2003.13461 (2020)

Google Scholar 

A. Ghosh, J. Chung, D. Yin, K. Ramchandran, An efficient framework for clustered federated learning. Adv. Neural Inf. Process. Syst. 33, 19586–19597 (2020)

MATH  Google Scholar 

W. Huang, M. Ye, B. Du, Learn from others and be yourself in heterogeneous federated learning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022), pp. 10143–10153

Google Scholar 

A. Imteaj, M.H. Amini, Leveraging asynchronous federated learning to predict customers financial distress. Intel. Syst. Appl. 14, 200064 (2022)

Google Scholar 

A. Imteaj, U. Thakker, S. Wang, J. Li, M.H. Amini, A survey on federated learning for resource-constrained IoT devices. IEEE Internet Things J. 9(1), 1–24 (2021)

Article  Google Scholar 

Y. Jiang, J. Konečnỳ, K. Rush, S. Kannan, Improving federated learning personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488 (2019)

Google Scholar 

P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis, A.N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

Google Scholar 

J. Konečnỳ, H.B. McMahan, D. Ramage, P. Richtárik et al., Federated learning: Strategies for improving communication efficiency, in NIPS (2016), pp. 4203–4211

Google Scholar 

A. Kundu, P. Yu, L. Wynter, S.H. Lim, Robustness and personalization in federated learning: a unified approach via regularization, in 2022 IEEE International Conference on Edge Computing and Communications (EDGE) (IEEE, 2022), pp. 1–11

Google Scholar 

Y. Laguel, K. Pillutla, J. Malick, Z. Harchaoui, Device heterogeneity in federated learning: a superquantile approach. arXiv preprint arXiv:2002.11223 (2020)

Google Scholar 

Q. Li, C. Zhao, P. Abbeel, Fair and secure multi-party machine learning, in Proceedings of the 37th International Conference on Machine Learning (ICML’20) (2020)

Google Scholar 

Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, B. He, A survey on federated learning systems: vision, hype and reality for data privacy and protection. IEEE Trans. Knowl. Data Eng. 35(4), 3347–3366 (2021)

Article  MATH  Google Scholar 

T. Li, A.K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, V. Smith, Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

Google Scholar 

Y. Li, W. Zhou, H. Wang, H. Mi, T.M. Hospedales, Fedh2l: Federated learning with model and statistical heterogeneity. arXiv preprint arXiv:2101.11296 (2021)

Google Scholar 

W.Y.B. Lim, N.C. Luong, D.T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, C. Miao, Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(3), 2031–2063 (2020)

Article  Google Scholar 

H. Liu, W. Yu, X. Zhang, G. Hu, H. Zhang, L. He, T.-S. Chua, Federated recommendation system: privacy challenges and solutions. arXiv preprint arXiv:2003.10075 (2020)

Google Scholar 

Y. Mao, C. You, J. Zhang, K. Huang, A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

Article  MATH  Google Scholar 

O. Marfoq, G. Neglia, A. Bellet, L. Kameni, R. Vidal, Federated multi-task learning under a mixture of distributions. Adv. Neural Inf. Process. Syst. 34, 15434–15447 (2021)

Google Scholar 

B. McMahan, E. Moore, D. Ramage, S. Hampson et al., Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016)

Google Scholar 

H.B. McMahan, E. Moore, D. Ramage et al., Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2017)

Google Scholar 

E. Moore, A. Imteaj, S. Rezapour, M.H. Amini, A survey on secure and private federated learning using blockchain: theory and application in resource-constrained computing. IEEE Internet Things J. 10, 21943–21947 (2023)

Article  Google Scholar 

V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Srivastava, A survey on security and privacy of federated learning. Future Gen. Comput. Syst. 115, 619–640 (2021)

Article  Google Scholar 

D.C. Nguyen, M. Ding, Q.-V. Pham, P.N. Pathirana, L.B. Le, A. Seneviratne, J. Li, D. Niyato, H.V. Poor, Federated learning meets blockchain in edge computing: opportunities and challenges. IEEE Internet Things J. 8(16), 12806–12825 (2021)

Article  Google Scholar 

T. Nishio, R. Yonetani, Client selection for federated learning with heterogeneous resources in mobile edge, in ICC 2019-2019 IEEE International Conference on Communications (ICC) (IEEE, 2019), pp. 1–7

Google Scholar 

S.K. Pye, H. Yu, Personalised federated learning: a combinational approach. arXiv preprint arXiv:2108.09618 (2021)

Google Scholar 

N. Shi, F. Lai, R. Al Kontar, M. Chowdhury, Fed-ensemble: ensemble models in federated learning for improved generalization and uncertainty quantification. IEEE Trans. Autom. Sci. Eng. 21, 2793–2798 (2023)

MATH  Google Scholar 

R. Shokri, V. Shmatikov, Privacy-preserving deep learning, in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (2015), pp. 1310–1321

Google Scholar 

V. Smith, C.-K. Chiang, M. Sanjabi, A.S. Talwalkar, Federated multi-task learning. Adv. Neural Inf. Process. Syst. 30, 1–4 (2017)

Google Scholar 

X. Su, W. Zhang, R. Lu, X. (Sherman) Shen, Heterogeneity and diversity in distributed sensor networks for environmental monitoring: challenges, opportunities, and trends. IEEE Internet Things J. 6(5), 9089–9102 (2019)

Google Scholar 

B. Sun, H. Huo, Y. Yang, B. Bai, Partialfed: cross-domain personalized federated learning via partial initialization. Adv. Neural Inf. Process. Syst. 34, 23309–23320 (2021)

Google Scholar 

A.Z. Tan, H. Yu, L. Cui, Q. Yang, Towards personalized federated learning. IEEE Trans. Neural Netw. Learn. Syst. 34, 9588–9596 (2022)

MathSciNet  Google Scholar 

Z. Tang, X. Chu, R.Y. Ran, S. Lee, S. Shi, Y. Zhang, Y. Wang, A.Q. Liang, S. Avestimehr, C. He, Fedml parrot: a scalable federated learning system via heterogeneity-aware scheduling on sequential and hierarchical training. arXiv preprint arXiv:2303.01778 (2023)

Google Scholar 

n.d. Tran, P.N. Nguyen, T.H. Nguyen, P. Le Nguyen, T.T. Nguyen, Y. Ji et al., Enhancing the generalization of personalized federated learning with multi-head model and ensemble voting, in 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (IEEE, 2024), pp. 205–216

Google Scholar 

J. Wang, Q. Liu, H. Liang, G. Joshi, H.V. Poor, Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural Inf. Process. Syst. 33, 7611–7623 (2020)

MATH  Google Scholar 

S. Wang, D. Tu, P. Khedekar, A. Parameswaran, Federated learning for healthcare informatics. arXiv preprint arXiv:1911.06270 (2020)

Google Scholar 

P. Xiao, S. Cheng, V. Stankovic, D. Vukobratovic, Averaging is probably not the optimum way of aggregating parameters in federated learning. Entropy 22(3), 314 (2020)

Google Scholar 

B. Xiong, X. Yang, F. Qi, C. Xu, A unified framework for multi-modal federated learning. Neurocomputing 480, 110–118 (2022)

Article  MATH  Google Scholar 

R. Xu, Y.-J. Angela Zhang, J. Huang, Tackling privacy heterogeneity in federated learning, in 2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (2023), pp. 326–333

Google Scholar 

Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: concept and applications. ACM Trans. Intel. Syst. Technol. (TIST) 10(2), 1–19 (2019)

Google Scholar 

Q. Yang, Y. Liu, S. Cheng, T. Zhang, Y. Sun, F.-Y. Wang, Federated learning for cross-industry collaboration: opportunities and challenges. IEEE Network 34(3), 41–47 (2020)

MATH  Google Scholar 

M. Ye, X. Fang, B. Du, P.C. Yuen, D. Tao, Heterogeneous federated learning: state-of-the-art and research challenges. ACM Comput. Surv. 56(3), 1–44 (2023)

Article  MATH  Google Scholar 

Y. Ye, S. Li, F. Liu, Y. Tang, W. Hu, Edgefed: optimized federated learning based on edge computing. IEEE Access 8, 209191–209198 (2020)

Article  Google Scholar 

W. Yu, F. Liang, X. He, H. Zhang, K. Yang, A survey of edge computing-based designs for the industrial internet of things. Future Gen. Comput. Syst. 100, 859–876 (2019)

MATH  Google Scholar 

Comments (0)

No login
gif