M. Aigner, S. Brant, Embedding arbitrary graphs of maximum degree two. J. Lond. Math. Soc. II Ser. 48, 39–51 (1993)
Article MathSciNet MATH Google Scholar
N. Alon, E. Fischer, 2-factors in dense graphs. Discret. Math. 152, 13–23 (1996)
Article MathSciNet MATH Google Scholar
N. Alon, Z. Füredi, Spanning subgraphs of random graphs. Graphs Combin. 8, 91–94 (1992)
Article MathSciNet MATH Google Scholar
L. Bahiense, Y. Frota, T.F. Noronha, C.C. Ribeiro, A branch-and-cut algorithm for the equitable coloring problem using a formulation by representatives. Discret. Appl. Math. 164, 34–46 (2014)
Article MathSciNet MATH Google Scholar
B. Baker, E. Coffman, Mutual exclusion scheduling. Theor. Comput. Sci. 162, 225–243 (1996)
Article MathSciNet MATH Google Scholar
M. Behzad, Graphs and their chromatic numbers. Ph.D. Dissertation, Michigan State University, U.S.A., 1965
J. Blazewics, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Scheduling Computer and Manufacturing Processes (Springer, Berlin, 2001)
H.L. Bodlaender, F.V. Fomin, Equitable colorings of bounded treewidth graphs. Theor. Comput. Sci. 349, 22–30 (2005)
Article MathSciNet MATH Google Scholar
H.L. Bodlaender, K. Jansen, On the complexity of scheduling incompatible jobs with unit-times, in Foundations of Computer Science 1993, Lecture Notes in Computer Science, vol. 711 (Springer, Berlin, 1993), pp. 291–300
B. Bollobás, R.K. Guy, Equitable and proportional coloring of trees. J. Comb. Theory Ser. B 34, 177–186 (1983)
Article MathSciNet MATH Google Scholar
B. Bollobás, A.V. Kostochka, K. Nakprasit, Packing d-degenerate graphs. J. Comb. Theory Ser. B 98, 85–94 (2008)
Article MathSciNet MATH Google Scholar
P.A. Catlin, On the Hajnal-Szemerédi theorem on disjoint cliques. Util. Math. 17, 163–177 (1980)
G.J. Chang, A note on equitable colorings of forests. Eur. J. Comb. 30, 809–812 (2009)
Article MathSciNet MATH Google Scholar
B.-L. Chen, K.-C. Huang, The equitable colorings of Kneser graphs. Taiwan. J. Math. 12, 887–900 (2008)
Article MathSciNet MATH Google Scholar
B.-L. Chen, K.-W. Lih, A note on the m-bounded chromatic number of a tree. Eur. J. Comb. 14, 311–312 (1993)
Article MathSciNet MATH Google Scholar
B.-L. Chen, K.-W. Lih, Equitable coloring of trees. J. Comb. Theory Ser. B 61, 83–87 (1994)
Article MathSciNet MATH Google Scholar
B.-L. Chen, C.-H. Yen, Equitable Δ-coloring of graphs. Discret. Math. 312, 1512–1517 (2012)
Article MathSciNet MATH Google Scholar
B.-L. Chen, K.-W. Lih, P.-L. Wu, Equitable coloring and the maximum degree. Eur. J. Comb. 15, 443–447 (1994)
Article MathSciNet MATH Google Scholar
B.-L. Chen, M.-T. Ko, K.-W. Lih, Equitable and m-bounded coloring of split graphs, in Combinatorics and Computer Science. Lecture Notes in Computer Science, vol. 1120 (Springer, Berlin/New York, 1996), pp. 1–5
B.-L. Chen, K.-C. Huang, C.-H. Yen, Chromatic coloring with a maximum color class. Discret. Math. 308, 5533–5537 (2008)
Article MathSciNet MATH Google Scholar
B.-L. Chen, K.-W. Lih, J.-H. Yan, Equitable colorings of interval graphs and products of graphs (2009). arXiv:0903.1396
B.-L. Chen, K.-W. Lih, C.-H. Yen, Equivalence of two conjectures on equitable coloring of graphs. J. Comb. Optim. 25, 501–504 (2013)
Article MathSciNet MATH Google Scholar
B.-L. Chen, K.-C. Huang, K.-W. Lih, Equitable coloring of graphs with intermediate maximum degree (2014). arXiv:1408.6046
T. Chunling, L. Xiaohui, Y. Yuansheng, L. Zhihe, Equitable total coloring of \(C_m \square C_n\). Discret. Appl. Math. 157, 596–601 (2009)
K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hung. 14, 423–439 (1963)
Article MathSciNet MATH Google Scholar
B. Csaba, M. Mydlarz, Approximate multipartite version of the Hajnal-Szemerédi theorem. J. Comb. Theory Ser. B 102, 395–410 (2012)
B. Csaba, A. Shokoufandeh, E. Szemerédi, Proof of a conjecture of Bollobás and Eldridge for graphs of maximum degree three. Combinatorica 23, 35–72 (2003)
Article MathSciNet MATH Google Scholar
A. Czygrinow, L. DeBiasio, H.A. Kierstead, T. Molla, An extension of the Hajnal-Szemerédi theorem to directed graphs. Combin. Probab. Comput. 24, 754–773 (2015)
Article MathSciNet MATH Google Scholar
S. Dantas, C.M.H. de Figueiredo, G. Mazzuoccolo, M. Preissmann, V.F. dos Santos, D. Sasaki, On the equitable total chromatic number of cubic graphs. Discret. Appl. Math. 209, 84–91 (2016)
Article MathSciNet MATH Google Scholar
S.K. Das, I. Finocchi, R. Petreschi, Conflict-free star-access in parallel memory systems. J. Parallel Distrib. Comput. 66, 1431–1441 (2006)
A.G. da Silva, S. Dantas, D. Sasaki, Equitable total coloring of complete r-partite p-balanced graphs. Discret. Appl. Math. 261, 123–135 (2019)
Article MathSciNet MATH Google Scholar
A.G. da Silva, S. Dantas, D. Sasaki, Determining equitable total chromatic number for infinite classes of complete r-partite graphs. Discret. Appl. Math. 296, 56–67 (2021)
Article MathSciNet MATH Google Scholar
R. de Joannis de Verclos, J.-S. Sereni, Equitable colorings of K4-minor-free graphs. J. Graph Algorithms Appl. 21, 1091–1105 (2017)
Article MathSciNet MATH Google Scholar
D. de Werra, Equitable colorations of graphs. Rev. Française Informat. Recherche Opérationnelle, R-3, 3–8 (1971)
MathSciNet MATH Google Scholar
D. de Werra, Some uses of hypergraph in timetabling. Asis-Pac. J. Oper. Res. 2, 2–12 (1985)
G. Dirac, Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)
Article MathSciNet MATH Google Scholar
A. Dong, J. Wu, Equitable and list equitable colorings of planar graphs without 6-cycles. Ars Comb. 139, 361–383 (2018)
MathSciNet MATH Google Scholar
A. Dong, X. Zhang, Equitable coloring and equitable choosability of graphs with small maximum average degree. Discuss. Math. Graph Theory 38, 829–839 (2018)
Article MathSciNet MATH Google Scholar
A. Dong, X. Tan, X. Zhang, G. Li, Equitable coloring and equitable choosability of planar graphs without 6- and 7-cycles. Ars Comb. 103, 333–352 (2012)
Comments (0)