Equitable Coloring of Graphs

M. Aigner, S. Brant, Embedding arbitrary graphs of maximum degree two. J. Lond. Math. Soc. II Ser. 48, 39–51 (1993)

Article  MathSciNet  MATH  Google Scholar 

N. Alon, E. Fischer, 2-factors in dense graphs. Discret. Math. 152, 13–23 (1996)

Article  MathSciNet  MATH  Google Scholar 

N. Alon, Z. Füredi, Spanning subgraphs of random graphs. Graphs Combin. 8, 91–94 (1992)

Article  MathSciNet  MATH  Google Scholar 

L. Bahiense, Y. Frota, T.F. Noronha, C.C. Ribeiro, A branch-and-cut algorithm for the equitable coloring problem using a formulation by representatives. Discret. Appl. Math. 164, 34–46 (2014)

Article  MathSciNet  MATH  Google Scholar 

B. Baker, E. Coffman, Mutual exclusion scheduling. Theor. Comput. Sci. 162, 225–243 (1996)

Article  MathSciNet  MATH  Google Scholar 

M. Behzad, Graphs and their chromatic numbers. Ph.D. Dissertation, Michigan State University, U.S.A., 1965

MATH  Google Scholar 

J. Blazewics, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Scheduling Computer and Manufacturing Processes (Springer, Berlin, 2001)

Book  MATH  Google Scholar 

H.L. Bodlaender, F.V. Fomin, Equitable colorings of bounded treewidth graphs. Theor. Comput. Sci. 349, 22–30 (2005)

Article  MathSciNet  MATH  Google Scholar 

H.L. Bodlaender, K. Jansen, On the complexity of scheduling incompatible jobs with unit-times, in Foundations of Computer Science 1993, Lecture Notes in Computer Science, vol. 711 (Springer, Berlin, 1993), pp. 291–300

MATH  Google Scholar 

B. Bollobás, R.K. Guy, Equitable and proportional coloring of trees. J. Comb. Theory Ser. B 34, 177–186 (1983)

Article  MathSciNet  MATH  Google Scholar 

B. Bollobás, A.V. Kostochka, K. Nakprasit, Packing d-degenerate graphs. J. Comb. Theory Ser. B 98, 85–94 (2008)

Article  MathSciNet  MATH  Google Scholar 

P.A. Catlin, On the Hajnal-Szemerédi theorem on disjoint cliques. Util. Math. 17, 163–177 (1980)

MATH  Google Scholar 

G.J. Chang, A note on equitable colorings of forests. Eur. J. Comb. 30, 809–812 (2009)

Article  MathSciNet  MATH  Google Scholar 

B.-L. Chen, K.-C. Huang, The equitable colorings of Kneser graphs. Taiwan. J. Math. 12, 887–900 (2008)

Article  MathSciNet  MATH  Google Scholar 

B.-L. Chen, K.-W. Lih, A note on the m-bounded chromatic number of a tree. Eur. J. Comb. 14, 311–312 (1993)

Article  MathSciNet  MATH  Google Scholar 

B.-L. Chen, K.-W. Lih, Equitable coloring of trees. J. Comb. Theory Ser. B 61, 83–87 (1994)

Article  MathSciNet  MATH  Google Scholar 

B.-L. Chen, C.-H. Yen, Equitable Δ-coloring of graphs. Discret. Math. 312, 1512–1517 (2012)

Article  MathSciNet  MATH  Google Scholar 

B.-L. Chen, K.-W. Lih, P.-L. Wu, Equitable coloring and the maximum degree. Eur. J. Comb. 15, 443–447 (1994)

Article  MathSciNet  MATH  Google Scholar 

B.-L. Chen, M.-T. Ko, K.-W. Lih, Equitable and m-bounded coloring of split graphs, in Combinatorics and Computer Science. Lecture Notes in Computer Science, vol. 1120 (Springer, Berlin/New York, 1996), pp. 1–5

Google Scholar 

B.-L. Chen, K.-C. Huang, C.-H. Yen, Chromatic coloring with a maximum color class. Discret. Math. 308, 5533–5537 (2008)

Article  MathSciNet  MATH  Google Scholar 

B.-L. Chen, K.-W. Lih, J.-H. Yan, Equitable colorings of interval graphs and products of graphs (2009). arXiv:0903.1396

Google Scholar 

B.-L. Chen, K.-W. Lih, C.-H. Yen, Equivalence of two conjectures on equitable coloring of graphs. J. Comb. Optim. 25, 501–504 (2013)

Article  MathSciNet  MATH  Google Scholar 

B.-L. Chen, K.-C. Huang, K.-W. Lih, Equitable coloring of graphs with intermediate maximum degree (2014). arXiv:1408.6046

Google Scholar 

T. Chunling, L. Xiaohui, Y. Yuansheng, L. Zhihe, Equitable total coloring of \(C_m \square C_n\). Discret. Appl. Math. 157, 596–601 (2009)

Google Scholar 

K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hung. 14, 423–439 (1963)

Article  MathSciNet  MATH  Google Scholar 

B. Csaba, M. Mydlarz, Approximate multipartite version of the Hajnal-Szemerédi theorem. J. Comb. Theory Ser. B 102, 395–410 (2012)

Article  MATH  Google Scholar 

B. Csaba, A. Shokoufandeh, E. Szemerédi, Proof of a conjecture of Bollobás and Eldridge for graphs of maximum degree three. Combinatorica 23, 35–72 (2003)

Article  MathSciNet  MATH  Google Scholar 

A. Czygrinow, L. DeBiasio, H.A. Kierstead, T. Molla, An extension of the Hajnal-Szemerédi theorem to directed graphs. Combin. Probab. Comput. 24, 754–773 (2015)

Article  MathSciNet  MATH  Google Scholar 

S. Dantas, C.M.H. de Figueiredo, G. Mazzuoccolo, M. Preissmann, V.F. dos Santos, D. Sasaki, On the equitable total chromatic number of cubic graphs. Discret. Appl. Math. 209, 84–91 (2016)

Article  MathSciNet  MATH  Google Scholar 

S.K. Das, I. Finocchi, R. Petreschi, Conflict-free star-access in parallel memory systems. J. Parallel Distrib. Comput. 66, 1431–1441 (2006)

Article  MATH  Google Scholar 

A.G. da Silva, S. Dantas, D. Sasaki, Equitable total coloring of complete r-partite p-balanced graphs. Discret. Appl. Math. 261, 123–135 (2019)

Article  MathSciNet  MATH  Google Scholar 

A.G. da Silva, S. Dantas, D. Sasaki, Determining equitable total chromatic number for infinite classes of complete r-partite graphs. Discret. Appl. Math. 296, 56–67 (2021)

Article  MathSciNet  MATH  Google Scholar 

R. de Joannis de Verclos, J.-S. Sereni, Equitable colorings of K4-minor-free graphs. J. Graph Algorithms Appl. 21, 1091–1105 (2017)

Article  MathSciNet  MATH  Google Scholar 

D. de Werra, Equitable colorations of graphs. Rev. Française Informat. Recherche Opérationnelle, R-3, 3–8 (1971)

MathSciNet  MATH  Google Scholar 

D. de Werra, Some uses of hypergraph in timetabling. Asis-Pac. J. Oper. Res. 2, 2–12 (1985)

MATH  Google Scholar 

G. Dirac, Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)

Article  MathSciNet  MATH  Google Scholar 

A. Dong, J. Wu, Equitable and list equitable colorings of planar graphs without 6-cycles. Ars Comb. 139, 361–383 (2018)

MathSciNet  MATH  Google Scholar 

A. Dong, X. Zhang, Equitable coloring and equitable choosability of graphs with small maximum average degree. Discuss. Math. Graph Theory 38, 829–839 (2018)

Article  MathSciNet  MATH  Google Scholar 

A. Dong, X. Tan, X. Zhang, G. Li, Equitable coloring and equitable choosability of planar graphs without 6- and 7-cycles. Ars Comb. 103, 333–352 (2012)

MathSciNet 

Comments (0)

No login
gif