A. Agra, C. Requejo, Revisiting a Cornujols-Nemhauser-Wolsey formulation for the p-median problem. EURO J. Comput. Optim. 12, 100081 (2024)
B.F. AlBdaiwi, B. Goldengorin, G. Sierksma, Equivalent instances of the simple plant location problem. Comput. Math. Appl. 57, 812–820 (2009)
Article MathSciNet Google Scholar
B.F. AlBdaiwi, D. Ghosh, B. Goldengorin, Data aggregation for p-median problems. J. Comb. Optim. 21(3), 348–363 (2011)
Article MathSciNet Google Scholar
P. Avella, A. Sforza, Logical reduction tests for the p-median problem. Ann. Oper. Res. 86, 105–115 (1999)
Article MathSciNet Google Scholar
P. Avella, A. Sassano, I. Vasil’ev, Computational study of large-scale p-median problems. Math. Program. Ser. A 109, 89–114 (2007)
Article MathSciNet Google Scholar
E. Balas, P. Toth, Branch and bound methods, Chapter 10 in The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, ed. by E.L. Lawler et al. (Wiley-Interscience, 1985)
M. Batsyn, B. Goldengorin, A. Kocheturov, P.M. Pardalos, Tolerance-based vs. cost-based branching for the asymmetric capacitated vehicle routing problem, in Models, Algorithms, and Technologies for Network Analysis: Proceedings of the Second International Conference on Network Analysis (Springer, New York, 2013), pp. 1–10
J.E. Beasley, Lagrangian heuristics for location problems. Eur. J. Oper. Res. 65, 383–399 (1993)
J.E. Beasley, OR-Library, Available at the web address. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
H. Bekker, E.P. Braad, B. Goldengorin, Using bipartite and multidimensional matching to select the roots of a system of polynomial equations, in Computational Science and Its Applications–ICCSA 2005: International Conference, Singapore, 9–12 May 2005. Lecture Notes in Computer Science, vol. 3483 (2005), pp. 397–406
A.S. Belenky (ed.), Mathematical modeling of voting systems and elections: theory and Applications. Math. Comput. Model. 48(9–10), 1295–1676 (2008)
C. Beltran, C. Tadonki, J.P. Vial, Solving the p-median problem with a semi-Lagrangian relaxation. Comput. Optim. Appl. 35, 239–260 (2006)
Article MathSciNet Google Scholar
S. Benati, An improved branch & bound method for the uncapacitated competitive location problem. Ann. Oper. Res. 122, 43–58 (2003)
Article MathSciNet Google Scholar
V.L. Beresnev, On a problem of mathematical standardization theory. Upravliajemyje Sistemy 11, 43–54 (1973) (in Russian)
O. Bilde, J. Krarup, Sharp lower bounds and efficient algorithms for the simple plant location problem. Ann. Discrete Math. 1, 79–97 (1977)
Article MathSciNet Google Scholar
A. Billionet, S. Elloumi, Using a mixed integer programming solver for the unconstrained qaudratic 0–1 problem. Math. Program. 109, 55–68 (2007)
Article MathSciNet Google Scholar
E. Boros, P.L. Hammer, Pseudo-Boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)
Article MathSciNet Google Scholar
O. Briant, D. Naddef, The optimal diversity management problem. Oper. Res. 52, 515–526 (2004)
Article MathSciNet Google Scholar
M.J. Brusco, H.-F. Köhn, Optimal partitioning of a data set based on the p-median problem. Psychometrika 73(1), 89–105 (2008)
Article MathSciNet Google Scholar
N. Christofides, Graph Theory: An Algorithmic Approach (Academic, London, 1975)
R.L. Church, COBRA: a new formulation of the classic p-median location problem. Ann. Oper. Res. 122, 103–120 (2003)
Article MathSciNet Google Scholar
R.L. Church, BEAMR: an exact and approximate model for the p-median problem. Comput. Oper. Res. 35, 417–426 (2008)
Article MathSciNet Google Scholar
R.L. Church, S. Wang, Solving the p-median problem on regular and lattice networks. Comput. Oper. Res. 123, 105057 (2020)
Article MathSciNet Google Scholar
R.L. Church, C.A. Baez, Generating optimal and near-optimal solutions to facility location problems. EPB: Urban Anal. City Sci. 47(6), 1014–1030 (2020)
R.L. Church, Z. Drezner, P. Kalczynski, Extensions to the planar p-median problem. Ann. Oper. Res. 326, 115–135 (2023)
Article MathSciNet Google Scholar
Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: A canonical representation of simple plant location problems and its applications. SIAM J. Matrix Anal. Appl. (SIMAX) 1(3), 261–272 (1980)
G. Cornuejols, G.L. Nemhauser, L.A. Wolsey, The uncapacitated facility location problem, in Discrete Location Theory, ed. by P.B. Mirchandani, R.L. Francis (Wiley-Interscience, New York, 1990), pp. 119–171
M. Daskin, K. Maass, The p-median problem, in Location Science, ed. by G. Laporte, S. Nickel, F.S. da Gama (Springer International Publishing, New York, 2015), pp. 21–45
C. Duran-Mateluna, Z. Ales, S. Elloumi, An efficient benders decomposition for the p-median problem. Eur. J. Oper. Res. 308, 84–96 (2023)
Article MathSciNet Google Scholar
S. Elloumi, A tighter formulation of the p-median problem. J. Comb. Optim. 19, 69–83 (2010)
Article MathSciNet Google Scholar
D. Erlenkotter, A dual-based procedure for uncapacitated facility location. Oper. Res. 26, 992–1009 (1978)
Article MathSciNet Google Scholar
R.D. Galvão, L.A. Raggi, A method for solving to optimality uncapacitated location problems. Ann. Oper. Res. 18, 225–244 (1989)
Article MathSciNet Google Scholar
M.R. Garey, D.S. Johnson, Computers and Intractability (Freeman, San Francisco, 1979)
D. Ghosh, B. Goldengorin, G. Sierksma, Data correcting algorithms in combinatorial optimization, in Handbook of Combinatorial Optimization, vol. 5, ed. by D.-Z. Du, P.M. Pardalos (Springer, Berlin, 2005), pp. 1–53
D. Ghosh, B. Goldengorin, G. Sierksma, Data correcting: a methodology for obtaining near-optimal solutions, in Operations Research with Economic and Industrial Applications: Emerging Trends, ed. by S.R. Mohan, S.K. Neogy (Anamaya Publishers, New Delhi, 2005), pp. 119–127
P.C. Gilmore, E.L. Lawler, D.B. Shmoys, Well-solved special cases, Chapter 4 in The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, ed. by E.L. Lawler et al. (Wiley-Interscience, 1985)
F. Glover, G.A. Kochenberger, B. Alidaee, Adaptive memory tabu search for binary quadratic programs. Manag. Sci. 44(3), 336–345 (1998)
B.I. Goldengorin, The design of optimal assortment for the vacuum diffusion welding sets. Standarty i Kachestvo 2, 19–21 (1975) (in Russian)
B. Goldengorin, Methods of solving multidimensional unification problems. Upravljaemye Sistemy 16, 63–72 (1977)
B. Goldengorin, A correcting algorithm for solving some discrete optimization problems. Sov. Math. Dokl. 27, 620–623 (1983)
B. Goldengorin, A correcting algorithm for solving allocation type problems. Autom. Rem. Control 45, 590–598 (1984)
B. Goldengorin, Correcting algorithms for solving multivariate unification problems. Sov. J. Comput. Syst. Sci. 1, 99–103 (1985)
B. Goldengorin, A decomposition algorithm for the unification problem and new polynomially solvable cases. Sov. Math. Dokl. 288, 19–23 (1986)
B. Goldengorin, On the exact solution of problems of unification by correcting algorithms. Doklady Akademii, Nauk, SSSR 294, 803–807 (1987)
B. Goldengorin, Requirements of Standards: Optimization Models and Algorithms (Russian Operations Research, Hoogezand, 1995)
B. Goldengorin, G. Sierksma, G.A. Tijssen, M. Tso, The data-correcting algorithm for minimization of supermodular functions. Manag. Sci. 45, 1539–1551 (1999)
B. Goldengorin, D. Ghosh, G. Sierksma, Equivalent instances of the simple plant location problem (SOM Research Report-00A54, University of Groningen, The Netherlands, 2000)
B. Goldengorin, Data Correcting Algorithms in Combinatorial Optimization (Ph.D. Thesis, SOM Research Institute, University of Groningen, Groningen, 2002)
B. Goldengorin, D. Ghosh, G. Sierksma, Branch and peg algorithms for the simple plant location problem. Comput. Oper. Res. 30, 967–981 (2003)
Article MathSciNet Google Scholar
B. Goldengorin, G.A. Tijssen, D. Ghosh, G. Sierksma, Solving the simple plant location problem using a data correcting approach. J. Glob. Optim. 25, 377–406 (2003)
Comments (0)