Data Correcting Approach for Routing and Location in Networks

A. Agra, C. Requejo, Revisiting a Cornujols-Nemhauser-Wolsey formulation for the p-median problem. EURO J. Comput. Optim. 12, 100081 (2024)

Article  Google Scholar 

B.F. AlBdaiwi, B. Goldengorin, G. Sierksma, Equivalent instances of the simple plant location problem. Comput. Math. Appl. 57, 812–820 (2009)

Article  MathSciNet  Google Scholar 

B.F. AlBdaiwi, D. Ghosh, B. Goldengorin, Data aggregation for p-median problems. J. Comb. Optim. 21(3), 348–363 (2011)

Article  MathSciNet  Google Scholar 

P. Avella, A. Sforza, Logical reduction tests for the p-median problem. Ann. Oper. Res. 86, 105–115 (1999)

Article  MathSciNet  Google Scholar 

P. Avella, A. Sassano, I. Vasil’ev, Computational study of large-scale p-median problems. Math. Program. Ser. A 109, 89–114 (2007)

Article  MathSciNet  Google Scholar 

E. Balas, P. Toth, Branch and bound methods, Chapter 10 in The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, ed. by E.L. Lawler et al. (Wiley-Interscience, 1985)

Google Scholar 

M. Batsyn, B. Goldengorin, A. Kocheturov, P.M. Pardalos, Tolerance-based vs. cost-based branching for the asymmetric capacitated vehicle routing problem, in Models, Algorithms, and Technologies for Network Analysis: Proceedings of the Second International Conference on Network Analysis (Springer, New York, 2013), pp. 1–10

Google Scholar 

J.E. Beasley, Lagrangian heuristics for location problems. Eur. J. Oper. Res. 65, 383–399 (1993)

Article  Google Scholar 

J.E. Beasley, OR-Library, Available at the web address. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html

H. Bekker, E.P. Braad, B. Goldengorin, Using bipartite and multidimensional matching to select the roots of a system of polynomial equations, in Computational Science and Its Applications–ICCSA 2005: International Conference, Singapore, 9–12 May 2005. Lecture Notes in Computer Science, vol. 3483 (2005), pp. 397–406

Article  Google Scholar 

A.S. Belenky (ed.), Mathematical modeling of voting systems and elections: theory and Applications. Math. Comput. Model. 48(9–10), 1295–1676 (2008)

Google Scholar 

C. Beltran, C. Tadonki, J.P. Vial, Solving the p-median problem with a semi-Lagrangian relaxation. Comput. Optim. Appl. 35, 239–260 (2006)

Article  MathSciNet  Google Scholar 

S. Benati, An improved branch & bound method for the uncapacitated competitive location problem. Ann. Oper. Res. 122, 43–58 (2003)

Article  MathSciNet  Google Scholar 

V.L. Beresnev, On a problem of mathematical standardization theory. Upravliajemyje Sistemy 11, 43–54 (1973) (in Russian)

Google Scholar 

O. Bilde, J. Krarup, Sharp lower bounds and efficient algorithms for the simple plant location problem. Ann. Discrete Math. 1, 79–97 (1977)

Article  MathSciNet  Google Scholar 

A. Billionet, S. Elloumi, Using a mixed integer programming solver for the unconstrained qaudratic 0–1 problem. Math. Program. 109, 55–68 (2007)

Article  MathSciNet  Google Scholar 

E. Boros, P.L. Hammer, Pseudo-Boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)

Article  MathSciNet  Google Scholar 

O. Briant, D. Naddef, The optimal diversity management problem. Oper. Res. 52, 515–526 (2004)

Article  MathSciNet  Google Scholar 

M.J. Brusco, H.-F. Köhn, Optimal partitioning of a data set based on the p-median problem. Psychometrika 73(1), 89–105 (2008)

Article  MathSciNet  Google Scholar 

N. Christofides, Graph Theory: An Algorithmic Approach (Academic, London, 1975)

Google Scholar 

R.L. Church, COBRA: a new formulation of the classic p-median location problem. Ann. Oper. Res. 122, 103–120 (2003)

Article  MathSciNet  Google Scholar 

R.L. Church, BEAMR: an exact and approximate model for the p-median problem. Comput. Oper. Res. 35, 417–426 (2008)

Article  MathSciNet  Google Scholar 

R.L. Church, S. Wang, Solving the p-median problem on regular and lattice networks. Comput. Oper. Res. 123, 105057 (2020)

Article  MathSciNet  Google Scholar 

R.L. Church, C.A. Baez, Generating optimal and near-optimal solutions to facility location problems. EPB: Urban Anal. City Sci. 47(6), 1014–1030 (2020)

Google Scholar 

R.L. Church, Z. Drezner, P. Kalczynski, Extensions to the planar p-median problem. Ann. Oper. Res. 326, 115–135 (2023)

Article  MathSciNet  Google Scholar 

Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: A canonical representation of simple plant location problems and its applications. SIAM J. Matrix Anal. Appl. (SIMAX) 1(3), 261–272 (1980)

Google Scholar 

G. Cornuejols, G.L. Nemhauser, L.A. Wolsey, The uncapacitated facility location problem, in Discrete Location Theory, ed. by P.B. Mirchandani, R.L. Francis (Wiley-Interscience, New York, 1990), pp. 119–171

Google Scholar 

M. Daskin, K. Maass, The p-median problem, in Location Science, ed. by G. Laporte, S. Nickel, F.S. da Gama (Springer International Publishing, New York, 2015), pp. 21–45

Chapter  Google Scholar 

C. Duran-Mateluna, Z. Ales, S. Elloumi, An efficient benders decomposition for the p-median problem. Eur. J. Oper. Res. 308, 84–96 (2023)

Article  MathSciNet  Google Scholar 

S. Elloumi, A tighter formulation of the p-median problem. J. Comb. Optim. 19, 69–83 (2010)

Article  MathSciNet  Google Scholar 

D. Erlenkotter, A dual-based procedure for uncapacitated facility location. Oper. Res. 26, 992–1009 (1978)

Article  MathSciNet  Google Scholar 

R.D. Galvão, L.A. Raggi, A method for solving to optimality uncapacitated location problems. Ann. Oper. Res. 18, 225–244 (1989)

Article  MathSciNet  Google Scholar 

M.R. Garey, D.S. Johnson, Computers and Intractability (Freeman, San Francisco, 1979)

Google Scholar 

D. Ghosh, B. Goldengorin, G. Sierksma, Data correcting algorithms in combinatorial optimization, in Handbook of Combinatorial Optimization, vol. 5, ed. by D.-Z. Du, P.M. Pardalos (Springer, Berlin, 2005), pp. 1–53

Google Scholar 

D. Ghosh, B. Goldengorin, G. Sierksma, Data correcting: a methodology for obtaining near-optimal solutions, in Operations Research with Economic and Industrial Applications: Emerging Trends, ed. by S.R. Mohan, S.K. Neogy (Anamaya Publishers, New Delhi, 2005), pp. 119–127

Google Scholar 

P.C. Gilmore, E.L. Lawler, D.B. Shmoys, Well-solved special cases, Chapter 4 in The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, ed. by E.L. Lawler et al. (Wiley-Interscience, 1985)

Google Scholar 

F. Glover, G.A. Kochenberger, B. Alidaee, Adaptive memory tabu search for binary quadratic programs. Manag. Sci. 44(3), 336–345 (1998)

Article  Google Scholar 

B.I. Goldengorin, The design of optimal assortment for the vacuum diffusion welding sets. Standarty i Kachestvo 2, 19–21 (1975) (in Russian)

Google Scholar 

B. Goldengorin, Methods of solving multidimensional unification problems. Upravljaemye Sistemy 16, 63–72 (1977)

MathSciNet  Google Scholar 

B. Goldengorin, A correcting algorithm for solving some discrete optimization problems. Sov. Math. Dokl. 27, 620–623 (1983)

Google Scholar 

B. Goldengorin, A correcting algorithm for solving allocation type problems. Autom. Rem. Control 45, 590–598 (1984)

MathSciNet  Google Scholar 

B. Goldengorin, Correcting algorithms for solving multivariate unification problems. Sov. J. Comput. Syst. Sci. 1, 99–103 (1985)

MathSciNet  Google Scholar 

B. Goldengorin, A decomposition algorithm for the unification problem and new polynomially solvable cases. Sov. Math. Dokl. 288, 19–23 (1986)

MathSciNet  Google Scholar 

B. Goldengorin, On the exact solution of problems of unification by correcting algorithms. Doklady Akademii, Nauk, SSSR 294, 803–807 (1987)

MathSciNet  Google Scholar 

B. Goldengorin, Requirements of Standards: Optimization Models and Algorithms (Russian Operations Research, Hoogezand, 1995)

Google Scholar 

B. Goldengorin, G. Sierksma, G.A. Tijssen, M. Tso, The data-correcting algorithm for minimization of supermodular functions. Manag. Sci. 45, 1539–1551 (1999)

Article  Google Scholar 

B. Goldengorin, D. Ghosh, G. Sierksma, Equivalent instances of the simple plant location problem (SOM Research Report-00A54, University of Groningen, The Netherlands, 2000)

Google Scholar 

B. Goldengorin, Data Correcting Algorithms in Combinatorial Optimization (Ph.D. Thesis, SOM Research Institute, University of Groningen, Groningen, 2002)

Google Scholar 

B. Goldengorin, D. Ghosh, G. Sierksma, Branch and peg algorithms for the simple plant location problem. Comput. Oper. Res. 30, 967–981 (2003)

Article  MathSciNet  Google Scholar 

B. Goldengorin, G.A. Tijssen, D. Ghosh, G. Sierksma, Solving the simple plant location problem using a data correcting approach. J. Glob. Optim. 25, 377–406 (2003)

Article  MathSciNet 

Comments (0)

No login
gif