Arosio P, Knowles TPJ, Linse S (2015) On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17:7606–7618
Article CAS PubMed PubMed Central Google Scholar
Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL (2021) Cholesterol in Membranes Facilitates Aggregation of Amyloid β Protein at Physiologically Relevant Concentrations. ACS Chem Neurosci 12:506–516. https://doi.org/10.1021/acschemneuro.0c00688
Article CAS PubMed Google Scholar
Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL (2020) Interaction of Aβ42 with Membranes Triggers the Self-Assembly into Oligomers. Int J Mol Sci 21. https://doi.org/10.3390/ijms21031129
Bucciantini M, Rigacci S, Stefani M (2014) Amyloid Aggregation: Role of Biological Membranes and the Aggregate-Membrane System. J Phys Chem Lett 5:517–527. https://doi.org/10.1021/jz4024354
Article CAS PubMed Google Scholar
Chen G, Xu T, Yan Y et al (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38:1205–1235. https://doi.org/10.1038/aps.2017.28
Article CAS PubMed PubMed Central Google Scholar
Chen G, Xu T, Yan Y et al (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38:1205–1235. https://doi.org/10.1038/aps.2017.28
Article CAS PubMed PubMed Central Google Scholar
Cohen SIA, Linse S, Luheshi LM et al (2013) Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci 110:9758–9763. https://doi.org/10.1073/pnas.1218402110
Article PubMed PubMed Central Google Scholar
Esch FS, Keim PS, Beattie EC et al (1990) Cleavage of Amyloid β Peptide During Constitutive Processing of Its Precursor. Science (1979) 248:1122–1124. https://doi.org/10.1126/science.2111583
Fitzner D, Bader JM, Penkert H et al (2020) Cell-Type- and Brain-Region-Resolved Mouse Brain Lipidome. Cell Rep 32:108132. https://doi.org/10.1016/j.celrep.2020.108132
Article CAS PubMed Google Scholar
Flagmeier P, De S, Michaels TCT et al (2020) Direct measurement of lipid membrane disruption connects kinetics and toxicity of Aβ42 aggregation. Nat Struct Mol Biol 27:886–891. https://doi.org/10.1038/s41594-020-0471-z
Article CAS PubMed Google Scholar
Glabe CG, Kayed R (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66:S74–S78. https://doi.org/10.1212/01.wnl.0000192103.24796.42
Article CAS PubMed Google Scholar
Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112. https://doi.org/10.1038/nrm2101
Article CAS PubMed Google Scholar
Habchi J, Chia S, Galvagnion C et al (2018) Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat Chem 10:673–683. https://doi.org/10.1038/s41557-018-0031-x
Article CAS PubMed Google Scholar
Hampel H, Hardy J, Blennow K et al (2021) The Amyloid-β Pathway in Alzheimer’s Disease. Mol Psychiatry 26:5481–5503. https://doi.org/10.1038/s41380-021-01249-0
Article CAS PubMed PubMed Central Google Scholar
Hardy JA, Higgins GA (1992) Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science (1979) 256:184–185. https://doi.org/10.1126/science.1566067
Koo EH, Lansbury PT, Kelly JW (1999) Amyloid diseases: Abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci 96:9989–9990. https://doi.org/10.1073/pnas.96.18.9989
Article CAS PubMed PubMed Central Google Scholar
Krausser J, Knowles TPJ, Šarić A (2020) Physical mechanisms of amyloid nucleation on fluid membranes. Proc Natl Acad Sci 117:33090–33098. https://doi.org/10.1073/pnas.2007694117
Article CAS PubMed PubMed Central Google Scholar
LeVine H (1995) Thioflavine T interaction with amyloid β-sheet structures. Amyloid 2:1–6. https://doi.org/10.3109/13506129509031881
Matsuzaki K (2014) How Do Membranes Initiate Alzheimer’s Disease? Formation of Toxic Amyloid Fibrils by the Amyloid β-Protein on Ganglioside Clusters. Acc Chem Res 47:2397–2404. https://doi.org/10.1021/ar500127z
Article CAS PubMed Google Scholar
Meyer HW, Bunjes H, Ulrich AS (1999) Morphological transitions of brain sphingomyelin are determined by the hydration protocol: ripples re-arrange in plane, and sponge-like networks disintegrate into small vesicles. Chem Phys Lipids 99:111–123. https://doi.org/10.1016/S0009-3084(99)00029-8
Article CAS PubMed Google Scholar
Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T. Anal Biochem 177:244–249. https://doi.org/10.1016/0003-2697(89)90046-8
Article CAS PubMed Google Scholar
Nunan J, Small DH (2000) Regulation of APP cleavage by α-, β- and γ-secretases. FEBS Lett 483:6–10. https://doi.org/10.1016/S0014-5793(00)02076-7
Article CAS PubMed Google Scholar
Nyholm TKM, Lindroos D, Westerlund B, Slotte JP (2011) Construction of a DOPC/PSM/Cholesterol Phase Diagram Based on the Fluorescence Properties of trans-Parinaric Acid. Langmuir 27:8339–8350. https://doi.org/10.1021/la201427w
Article CAS PubMed Google Scholar
Parasassi T, De Stasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57:1179–1186. https://doi.org/10.1016/S0006-3495(90)82637-0
Article CAS PubMed PubMed Central Google Scholar
Parasassi T, De Stasio G, Ravagnan G et al (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179–189. https://doi.org/10.1016/S0006-3495(91)82041-0
Article CAS PubMed PubMed Central Google Scholar
Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) Laurdan and Prodan as Polarity-Sensitive Fluorescent Membrane Probes. J Fluoresc 8:365–373. https://doi.org/10.1023/A:1020528716621
Samsonov AV, Mihalyov I, Cohen FS (2001) Characterization of Cholesterol-Sphingomyelin Domains and Their Dynamics in Bilayer Membranes. Biophys J 81:1486–1500. https://doi.org/10.1016/S0006-3495(01)75803-1
Article CAS PubMed PubMed Central Google Scholar
Sasahara K, Morigaki K, Shinya K (2013) Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure. Phys Chem Chem Phys 15:8929–8939
Article CAS PubMed Google Scholar
Schmit JD, Ghosh K, Dill K (2011) What drives amyloid molecules to assemble into oligomers and fibrils? Biophys J 100:450–458
Comments (0)