Nigericin modifies the mechanism of the uncoupling action of bile acids in rat liver mitochondria by converting ΔpH into Δψ

Arduini A, Serviddio G, Tormos AM et al (2012) Mitochondrial dysfunction in cholestatic liver diseases. Front Biosci (Elite Ed) 4(6):2233–2252. https://doi.org/10.2741/539

Article  PubMed  Google Scholar 

Bangham JA, Lea EJA (1978) The interaction of detergents with bilayer lipid membranes. Biochim Biophys Acta 511:388–396. https://doi.org/10.1016/0005-2736(78)90275-4

Article  CAS  PubMed  Google Scholar 

Beavis AD, Lehninger AL (1986) The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation. Eur J Biochem 158(2):315–322. https://doi.org/10.1111/j.1432-1033.1986.tb09753.x

Article  CAS  PubMed  Google Scholar 

Bernardi P (1999) Mitochondrial transport of cations: channels, exchengers, and permeability transition. Physiol Rev 79:1127–1155. https://doi.org/10.1152/physrev.1999.79.4.1127

Article  CAS  PubMed  Google Scholar 

Bertholet AM, Kirichok Y (2022) Mitochondrial H+ Leak and Thermogenesis. Annu Rev Physiol 84:381–407. https://doi.org/10.1146/annurev-physiol-021119-034405

Article  CAS  PubMed  Google Scholar 

Brustovetsky NN, Dedukhova VI, Egorova MV et al (1990) Inhibitors of the ATP/ADP antiporter suppress stimulation of mitochondrial respiration and H+ permeability by palmitate and anionic detergents. FEBS Lett 272(1–2):187–189. https://doi.org/10.1016/0014-5793(90)80480-7

Article  CAS  PubMed  Google Scholar 

di Gregorio MC, Cautela J, Galantini L (2021) Physiology and physical chemistry of bile acids. Int J Mol Sci 22:1780. https://doi.org/10.3390/ijms22041780

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finkelstein A (1970) Weak-acid uncouplers of oxidative phosphorylation. Mechanism of action on thin lipid membranes. Biochim Biophys Acta 205(1):1–6. https://doi.org/10.1016/0005-2728(70)90055-1

Article  CAS  PubMed  Google Scholar 

Goedeke L, Shulman GI (2021) Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Mol Metab 46:101178. https://doi.org/10.1016/j.molmet.2021.101178

Article  CAS  PubMed  PubMed Central  Google Scholar 

Groen AK, Wanders RJA, Westerhoff HV (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–2757

Article  CAS  PubMed  Google Scholar 

Iaubasarova IR, Khailova LS, Firsov AM et al (2020) The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler. PLoS ONE 15(12):e0244499. https://doi.org/10.1371/journal.pone.0244499

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamo N, Muratsugu M, Hondoh R et al (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and reationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121. https://doi.org/10.1007/BF01868720

Article  CAS  PubMed  Google Scholar 

Kamp F, Hamilton JA (1993) Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry 32(41):11074–11086. https://doi.org/10.1021/bi00092a017

Article  CAS  PubMed  Google Scholar 

Khoroshavina EI, Dubinin MV, Samartsev VN (2015) The effects of bile acids on the liver mitochondria in the presence and absence of Ca2+. FEBS J 282(Suppl 1):100

Google Scholar 

Kotova EA, Antonenko YN (2022) Fifty Years of Research on Protonophores: Mitochondrial Uncoupling As a Basis for Therapeutic Action. Acta Naturae 14(1):4–13. https://doi.org/10.32607/actanaturae.11610

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krähenbühl S, Stucki J, Reichen J (1992) Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis. Hepatology 15(6):1160–1166. https://doi.org/10.1002/hep.1840150630

Article  PubMed  Google Scholar 

Krähenbühl S, Talos C, Fischer S et al (1994) Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 19(2):471–479. https://doi.org/10.1002/hep.1840190228

Article  PubMed  Google Scholar 

Kunji ERS, King MS, Ruprecht JJ et al (2020) The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology. Physiol (Bethesda) 35(5):302–327. https://doi.org/10.1152/physiol.00009.2020

Article  CAS  Google Scholar 

McLaughlin SG, Dilger JP (1980) Transport of protons across membranes by weak acids. Physiol Rev 60(3):825–863. https://doi.org/10.1152/physrev.1980.60.3.825

Article  CAS  PubMed  Google Scholar 

Miyoshi H, Nishioka T, Fujita T (1987) Quantitative relationship between protonophoric and uncoupling activities of substituted phenols. Biochim Biophys Acta 891(2):194–204. https://doi.org/10.1016/0005-2728(87)90011-9

Article  CAS  PubMed  Google Scholar 

Neves MC, Filipe HAL, Reis RL et al (2019) Interaction of Bile Salts With Lipid Bilayers: An Atomistic Molecular Dynamics Study. Front Physiol 10:393. https://doi.org/10.3389/fphys.2019.00393

Article  PubMed  PubMed Central  Google Scholar 

Nsengimana B, Okpara ES, Hou W et al (2022) Involvement of oxidative species in cyclosporine-mediated cholestasis. Front Pharmacol 13:1004844. https://doi.org/10.3389/fphar.2022.1004844

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petronilli V, Cola C, Massari S (1993) Physiological effectors modify voltage sensing by the cyclosporine A-sensitive permeability transition pore of mitochondria. J Biol Chem 268:21939–21945

Article  CAS  PubMed  Google Scholar 

Rolo AP, Oliveira PJ, Moreno AJ et al (2000) Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy. Toxicol Sci 57:177–185. https://doi.org/10.1093/toxsci/57.1.177

Article  CAS  PubMed  Google Scholar 

Samartsev VN, Smirnov AV, Zeldi IP et al (1997a) Involved of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria Biochimica et biophysica acta 1339(2–3):251–257. https://doi.org/10.1016/s0005-2728(96)00166-1

Samartsev VN, Mokhova EN, Skulachev VP (1997b) The pH-dependence reciprocal changes in contribution of ADP/ATP antiporter and aspartate/glutamate antiporter to the fatty acid-induced uncoupling. FEBS Lett 412(1):179–182. https://doi.org/10.1016/s0014-5793(97)00667-4

Article  CAS  PubMed  Google Scholar 

Samartsev VN, Dubinin MV, Adakeeva SI et al (2014) Calcium-independent uncoupling activity of palmitic acid in liver mitochondria is regulated by the ion fluxes causing the interconversion of ∆ψ and ∆pH across the inner membrane. Biochem Mosc Suppl Ser A: Membr Cell Biol 8:253–261. https://doi.org/10.1134/S1990747814020135

Article  Google Scholar 

Samartsev VN, Semenova AA, Dubinin MV (2020) A comparative study of the action of protonophore uncouplers and decoupling agents as inducers of free respiration in mitochondria in states 3 and 4: theoretical and experimental approaches. Cell Biochem Biophys 78:203–216. https://doi.org/10.1007/s12013-020-00914-5

Article  CAS  PubMed  Google Scholar 

Samartsev VN, Semenova AA, Ivanov AN et al (2022) Comparative study of free respiration in liver mitochondria during oxidation of various electron donors and under conditions of shutdown of complex III of the respiratory chain. Biochem Biophys Res Commun 606:163–167. https://doi.org/10.1016/j.bbrc.2022.03.099

Article  CAS  PubMed  Google Scholar 

Samartsev VN, Khoroshavina EI, Pavlova EK et al (2023) Bile Acids as Inducers of Protonophore and Ionophore Permeability of Biological and Artificial Membranes. Membranes 13(5):472. https://doi.org/10.3390/membranes13050472

Comments (0)

No login
gif