Arduini A, Serviddio G, Tormos AM et al (2012) Mitochondrial dysfunction in cholestatic liver diseases. Front Biosci (Elite Ed) 4(6):2233–2252. https://doi.org/10.2741/539
Bangham JA, Lea EJA (1978) The interaction of detergents with bilayer lipid membranes. Biochim Biophys Acta 511:388–396. https://doi.org/10.1016/0005-2736(78)90275-4
Article CAS PubMed Google Scholar
Beavis AD, Lehninger AL (1986) The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation. Eur J Biochem 158(2):315–322. https://doi.org/10.1111/j.1432-1033.1986.tb09753.x
Article CAS PubMed Google Scholar
Bernardi P (1999) Mitochondrial transport of cations: channels, exchengers, and permeability transition. Physiol Rev 79:1127–1155. https://doi.org/10.1152/physrev.1999.79.4.1127
Article CAS PubMed Google Scholar
Bertholet AM, Kirichok Y (2022) Mitochondrial H+ Leak and Thermogenesis. Annu Rev Physiol 84:381–407. https://doi.org/10.1146/annurev-physiol-021119-034405
Article CAS PubMed Google Scholar
Brustovetsky NN, Dedukhova VI, Egorova MV et al (1990) Inhibitors of the ATP/ADP antiporter suppress stimulation of mitochondrial respiration and H+ permeability by palmitate and anionic detergents. FEBS Lett 272(1–2):187–189. https://doi.org/10.1016/0014-5793(90)80480-7
Article CAS PubMed Google Scholar
di Gregorio MC, Cautela J, Galantini L (2021) Physiology and physical chemistry of bile acids. Int J Mol Sci 22:1780. https://doi.org/10.3390/ijms22041780
Article CAS PubMed PubMed Central Google Scholar
Finkelstein A (1970) Weak-acid uncouplers of oxidative phosphorylation. Mechanism of action on thin lipid membranes. Biochim Biophys Acta 205(1):1–6. https://doi.org/10.1016/0005-2728(70)90055-1
Article CAS PubMed Google Scholar
Goedeke L, Shulman GI (2021) Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Mol Metab 46:101178. https://doi.org/10.1016/j.molmet.2021.101178
Article CAS PubMed PubMed Central Google Scholar
Groen AK, Wanders RJA, Westerhoff HV (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–2757
Article CAS PubMed Google Scholar
Iaubasarova IR, Khailova LS, Firsov AM et al (2020) The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler. PLoS ONE 15(12):e0244499. https://doi.org/10.1371/journal.pone.0244499
Article CAS PubMed PubMed Central Google Scholar
Kamo N, Muratsugu M, Hondoh R et al (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and reationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121. https://doi.org/10.1007/BF01868720
Article CAS PubMed Google Scholar
Kamp F, Hamilton JA (1993) Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry 32(41):11074–11086. https://doi.org/10.1021/bi00092a017
Article CAS PubMed Google Scholar
Khoroshavina EI, Dubinin MV, Samartsev VN (2015) The effects of bile acids on the liver mitochondria in the presence and absence of Ca2+. FEBS J 282(Suppl 1):100
Kotova EA, Antonenko YN (2022) Fifty Years of Research on Protonophores: Mitochondrial Uncoupling As a Basis for Therapeutic Action. Acta Naturae 14(1):4–13. https://doi.org/10.32607/actanaturae.11610
Article CAS PubMed PubMed Central Google Scholar
Krähenbühl S, Stucki J, Reichen J (1992) Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis. Hepatology 15(6):1160–1166. https://doi.org/10.1002/hep.1840150630
Krähenbühl S, Talos C, Fischer S et al (1994) Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 19(2):471–479. https://doi.org/10.1002/hep.1840190228
Kunji ERS, King MS, Ruprecht JJ et al (2020) The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology. Physiol (Bethesda) 35(5):302–327. https://doi.org/10.1152/physiol.00009.2020
McLaughlin SG, Dilger JP (1980) Transport of protons across membranes by weak acids. Physiol Rev 60(3):825–863. https://doi.org/10.1152/physrev.1980.60.3.825
Article CAS PubMed Google Scholar
Miyoshi H, Nishioka T, Fujita T (1987) Quantitative relationship between protonophoric and uncoupling activities of substituted phenols. Biochim Biophys Acta 891(2):194–204. https://doi.org/10.1016/0005-2728(87)90011-9
Article CAS PubMed Google Scholar
Neves MC, Filipe HAL, Reis RL et al (2019) Interaction of Bile Salts With Lipid Bilayers: An Atomistic Molecular Dynamics Study. Front Physiol 10:393. https://doi.org/10.3389/fphys.2019.00393
Article PubMed PubMed Central Google Scholar
Nsengimana B, Okpara ES, Hou W et al (2022) Involvement of oxidative species in cyclosporine-mediated cholestasis. Front Pharmacol 13:1004844. https://doi.org/10.3389/fphar.2022.1004844
Article CAS PubMed PubMed Central Google Scholar
Petronilli V, Cola C, Massari S (1993) Physiological effectors modify voltage sensing by the cyclosporine A-sensitive permeability transition pore of mitochondria. J Biol Chem 268:21939–21945
Article CAS PubMed Google Scholar
Rolo AP, Oliveira PJ, Moreno AJ et al (2000) Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy. Toxicol Sci 57:177–185. https://doi.org/10.1093/toxsci/57.1.177
Article CAS PubMed Google Scholar
Samartsev VN, Smirnov AV, Zeldi IP et al (1997a) Involved of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria Biochimica et biophysica acta 1339(2–3):251–257. https://doi.org/10.1016/s0005-2728(96)00166-1
Samartsev VN, Mokhova EN, Skulachev VP (1997b) The pH-dependence reciprocal changes in contribution of ADP/ATP antiporter and aspartate/glutamate antiporter to the fatty acid-induced uncoupling. FEBS Lett 412(1):179–182. https://doi.org/10.1016/s0014-5793(97)00667-4
Article CAS PubMed Google Scholar
Samartsev VN, Dubinin MV, Adakeeva SI et al (2014) Calcium-independent uncoupling activity of palmitic acid in liver mitochondria is regulated by the ion fluxes causing the interconversion of ∆ψ and ∆pH across the inner membrane. Biochem Mosc Suppl Ser A: Membr Cell Biol 8:253–261. https://doi.org/10.1134/S1990747814020135
Samartsev VN, Semenova AA, Dubinin MV (2020) A comparative study of the action of protonophore uncouplers and decoupling agents as inducers of free respiration in mitochondria in states 3 and 4: theoretical and experimental approaches. Cell Biochem Biophys 78:203–216. https://doi.org/10.1007/s12013-020-00914-5
Article CAS PubMed Google Scholar
Samartsev VN, Semenova AA, Ivanov AN et al (2022) Comparative study of free respiration in liver mitochondria during oxidation of various electron donors and under conditions of shutdown of complex III of the respiratory chain. Biochem Biophys Res Commun 606:163–167. https://doi.org/10.1016/j.bbrc.2022.03.099
Article CAS PubMed Google Scholar
Samartsev VN, Khoroshavina EI, Pavlova EK et al (2023) Bile Acids as Inducers of Protonophore and Ionophore Permeability of Biological and Artificial Membranes. Membranes 13(5):472. https://doi.org/10.3390/membranes13050472
Comments (0)