Berberine diminishes the malignant progression of non-small cell lung cancer cells by targeting CDCA5 and CCNA2

Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics. CA Cancer J Clin 73(1):17–48

PubMed  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

PubMed  Google Scholar 

Suster DI, Mino-Kenudson M (2020) Molecular pathology of primary non-small cell lung cancer. Arch Med Res 51(8):784–798

CAS  PubMed  Google Scholar 

Miller M, Hanna N (2021) Advances in systemic therapy for non-small cell lung cancer. BMJ (Clin Res Ed) 375:n2363

Google Scholar 

Saw SPL, Ong BH, Chua KLM, Takano A, Tan DSW (2021) Revisiting neoadjuvant therapy in non-small-cell lung cancer. Lancet Oncol 22(11):e501–e516

CAS  PubMed  Google Scholar 

Song D, Hao J, Fan D (2020) Biological properties and clinical applications of berberine. Front Med 14(5):564–582

PubMed  Google Scholar 

Ortiz LM, Lombardi P, Tillhon M, Scovassi AI (2014) Berberine, an epiphany against cancer. Molecules (Basel, Switzerland) 19(8):12349–12367

PubMed  Google Scholar 

Samadi P, Sarvarian P, Gholipour E, Asenjan KS, Aghebati-Maleki L, Motavalli R, Hojjat-Farsangi M, Yousefi M (2020) Berberine: a novel therapeutic strategy for cancer. IUBMB Life 72(10):2065–2079

CAS  PubMed  Google Scholar 

Du GF, Le YJ, Sun X, Yang XY, He QY (2020) Proteomic investigation into the action mechanism of berberine against Streptococcus pyogenes. J Proteom 215:103666

CAS  Google Scholar 

Xiao Y, Tian C, Huang T, Han B, Wang M, Ma H, Li Z, Ye X, Li X (2018) 8-Cetylberberine inhibits growth of lung cancer in vitro and in vivo. Life Sci 192:259–269

CAS  PubMed  Google Scholar 

La X, Zhang L, Li Z, Yang P, Wang Y (2017) Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells. Oncotarget 8(13):20909–20924

PubMed  PubMed Central  Google Scholar 

Hou D, Xu G, Zhang C, Li B, Qin J, Hao X, Liu Q, Zhang X, Liu J, Wei J et al (2017) Berberine induces oxidative DNA damage and impairs homologous recombination repair in ovarian cancer cells to confer increased sensitivity to PARP inhibition. Cell Death Dis 8(10):e3070

PubMed  PubMed Central  Google Scholar 

Ni L, Li Z, Ren H, Kong L, Chen X, Xiong M, Zhang X, Ning B, Li J (2022) Berberine inhibits non-small cell lung cancer cell growth through repressing DNA repair and replication rather than through apoptosis. Clin Exp Pharmacol Physiol 49(1):134–144

CAS  PubMed  Google Scholar 

Liu Y, Liu X, Zhang N, Yin M, Dong J, Zeng Q, Mao G, Song D, Liu L, Deng H (2020) Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharmac Sinica B 10(12):2299–2312

CAS  Google Scholar 

Rankin S, Ayad NG, Kirschner MW (2005) Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol Cell 18(2):185–200

CAS  PubMed  Google Scholar 

Chang IW, Lin VC, He HL, Hsu CT, Li CC, Wu WJ, Huang CN, Wu TF, Li CF (2015) CDCA5 overexpression is an indicator of poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder. Am J Transl Res 7(4):710–722

PubMed  PubMed Central  Google Scholar 

Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A, Bhaskara V, Bando M, Shirahige K, Hyman AA, Mechtler K et al (2010) Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143(5):737–749

CAS  PubMed  Google Scholar 

Ladurner R, Kreidl E, Ivanov MP, Ekker H, Idarraga-Amado MH, Busslinger GA, Wutz G, Cisneros DA, Peters JM (2016) Sororin actively maintains sister chromatid cohesion. EMBO J 35(6):635–653

CAS  PubMed  PubMed Central  Google Scholar 

Nguyen MH, Koinuma J, Ueda K, Ito T, Tsuchiya E, Nakamura Y, Daigo Y (2010) Phosphorylation and activation of cell division cycle associated 5 by mitogen-activated protein kinase play a crucial role in human lung carcinogenesis. Can Res 70(13):5337–5347

CAS  Google Scholar 

He J, Zhou X, Wang X, Zhang Q, Zhang L, Wang T, Zhu W, Liu P, Zhu M (2022) Prognostic and immunological roles of cell cycle regulator CDCA5 in human solid tumors. Int J Gen Med 15:8257–8274

CAS  PubMed  PubMed Central  Google Scholar 

Shen W, Tong D, Chen J, Li H, Hu Z, Xu S, He S, Ge Z, Zhang J, Mao Q et al (2022) Silencing oncogene cell division cycle associated 5 induces apoptosis and G1 phase arrest of non-small cell lung cancer cells via p53–p21 signaling pathway. J Clin Lab Anal 36(5):e24396

CAS  PubMed  PubMed Central  Google Scholar 

Gao T, Han Y, Yu L, Ao S, Li Z, Ji J (2014) CCNA2 is a prognostic biomarker for ER+ breast cancer and tamoxifen resistance. PLoS ONE 9(3):e91771

PubMed  PubMed Central  Google Scholar 

Lu Y, Su F, Yang H, Xiao Y, Zhang X, Su H, Zhang T, Bai Y, Ling X (2022) E2F1 transcriptionally regulates CCNA2 expression to promote triple negative breast cancer tumorigenicity. Cancer Biomark 33(1):57–70

CAS  PubMed  Google Scholar 

Hung YH, Huang HL, Chen WC, Yen MC, Cho CY, Weng TY, Wang CY, Chen YL, Chen LT, Lai MD (2017) Argininosuccinate lyase interacts with cyclin A2 in cytoplasm and modulates growth of liver tumor cells. Oncol Rep 37(2):969–978

CAS  PubMed  Google Scholar 

Ruan JS, Zhou H, Yang L, Wang L, Jiang ZS, Wang SM (2017) CCNA2 facilitates epithelial-to-mesenchymal transition via the integrin αvβ3 signaling in NSCLC. Int J Clin Exp Pathol 10(8):8324–8333

PubMed  PubMed Central  Google Scholar 

Wang J, Wong YK, Liao F (2018) What has traditional Chinese medicine delivered for modern medicine? Expert Rev Mol Med 20:e4

PubMed  Google Scholar 

Liauw W (2021) Western medicine and traditional Chinese medicine: encouraging the twain to meet. Intern Med J 51(6):833–834

PubMed  Google Scholar 

Rauf A, Abu-Izneid T, Khalil AA, Imran M, Shah ZA, Emran TB, Mitra S, Khan Z, Alhumaydhi FA, Aljohani ASM et al (2021) Berberine as a potential anticancer agent: a comprehensive review. Molecules 26:23

Google Scholar 

Devarajan N, Jayaraman S, Mahendra J, Venkatratnam P, Rajagopal P, Palaniappan H, Ganesan SK (2021) Berberine-A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytotherapy Res PTR 35(6):3059–3077

CAS  Google Scholar 

Achi IT, Sarbadhikary P, George BP, Abrahamse H (2022) Multi-target potential of berberine as an antineoplastic and antimetastatic agent: a special focus on lung cancer treatment. Cells 11:21

Google Scholar 

Chang JM, Kam KH, Chao WY, Zhao PW, Chen SH, Chung HC, Li YZ, Wu JY, Lee YR (2020) Berberine derivatives suppress cellular proliferation and tumorigenesis in vitro in human non-small-cell lung cancer cells. Int J Mol Sci 21:12

Google Scholar 

Akula SM, Candido S, Libra M, Abrams SL, Steelman LS, Lertpiriyapong K, Ramazzotti G, Ratti S, Follo MY, Martelli AM et al (2019) Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells. Adv Biol Regul 73:100633

CAS  PubMed  Google Scholar 

Ren M, Yang L, Li D, Yang L, Su Y, Su X (2020) Cell cycle regulation by berberine in human melanoma A375 cells. Bull Exp Biol Med 169(4):491–496

CAS  PubMed  Google Scholar 

Zheng Y, Kou J, Wang P, Ye T, Wang Z, Gao Z, Cong L, Li M, Dong B, Yang W et al (2021) Berberine-induced TFEB deacetylation by SIRT1 promotes autophagy in peritoneal macrophages. Aging 13(5):7096–7119

CAS  PubMed  PubMed Central  Google Scholar 

Zheng F, Wu J, Tang Q, Xiao Q, Wu W, Hann SS (2018) The enhancement of combination of berberine and metformin in inhibition of DNMT1 gene expression through interplay of SP1 and PDPK1. J Cell Mol Med 22(1):600–612

CAS  PubMed  Google Scholar 

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y et al (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinform 54:31–33

Google Scholar 

Wang Y, Yao J, Zhu Y, Zhao X, Lv J, Sun F (2022) Knockdown of CDCA5 suppresses malignant progression of breast cancer cells by regulating PDS5A. Mol Med Rep 25:6

Google Scholar 

Zhang Z, Shen M, Zhou G (2018) Upregulation of CDCA5 promotes gastric cancer malignant progression via influencing cyclin E1. Biochem Biophys Res Commun 496(2):482–489

CAS  PubMed  Google Scholar 

Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11(3):961–971

CAS  PubMed  PubMed Central  Google Scholar 

Arsic N, Bendris N, Peter M, Begon-Pescia C, Rebouissou C, Gadéa G, Bouquier N, Bibeau F, Lemmers B, Blanchard JM (2012) A novel function for Cyclin A2: control of cell invasion via RhoA signaling. J Cell Biol 196(1):147–162

CAS  PubMed 

Comments (0)

No login
gif