Biosynthesis of unique natural product scaffolds by Fe(II)/αKG-dependent oxygenases

Newman DJ, Cragg GM (2020) Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod 83:770–803

Article  PubMed  CAS  Google Scholar 

Hutchings MI, Truman AW, Wilkinson B (2019) Antibiotics: past, present and future. Curr Opin Microbiol 51:72–80

Article  PubMed  CAS  Google Scholar 

Geris R, Simpson TJ (2009) Meroterpenoids produced by fungi. Nat Prod Rep 26:1063–1094

Article  PubMed  CAS  Google Scholar 

Matsuda Y, Abe I (2016) Biosynthesis of fungal meroterpenoids. Nat Prod Rep 33:26–53

Article  PubMed  CAS  Google Scholar 

Matsuda Y, Awakawa T, Mori T, Abe I (2016) Unusual chemistries in fungal meroterpenoid biosynthesis. Curr Opin Chem Biol 31:1–7

Article  PubMed  CAS  Google Scholar 

Krebs C, Galonić Fujimori D, Walsh CT, Bollinger JMJr, (2007) Non-heme Fe(IV)–oxo intermediates. Acc Chem Res 40:484–492

Article  PubMed  CAS  Google Scholar 

Huang X, Groves JT (2017) Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. J Biol Inorg Chem 22:185–207

Article  PubMed  CAS  Google Scholar 

Gao SS, Naowarojna N, Cheng R, Liu X, Liu P (2018) Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 35:792–837

Article  PubMed  PubMed Central  CAS  Google Scholar 

Awakawa T, Mori T, Ushimaru R, Abe I (2023) Structure-based engineering of α-ketoglutarate dependent oxygenases in fungal meroterpenoid biosynthesis. Nat Prod Rep 40:46–61

Article  PubMed  CAS  Google Scholar 

Zhao S, Wu L, Xu Y, Nie Y (2025) Fe(II) and 2-oxoglutarate-dependent dioxygenases for natural product synthesis: molecular insights into reaction diversity. Nat Prod Rep in press, DOI. https://doi.org/10.1039/D4NP00030G

Book  Google Scholar 

Zwick CR, Renata H (2020) Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Nat Prod Rep 37:1065–1079

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tao H, Abe I (2021) Enzymology and biosynthesis of the orsellinic acid derived medicinal meroterpenoids. Curr Opin Biotechnol 69:52–59

Article  PubMed  CAS  Google Scholar 

Matsuda Y, Awakawa T, Wakimoto T, Abe I (2013) Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis. J Am Chem Soc 135:10962–10965

Article  PubMed  CAS  Google Scholar 

Matsuda Y, Iwabuchi T, Fujimoto T, Awakawa T, Nakashima Y, Mori T, Zhang H, Hayashi F, Abe I (2016) Discovery of key dioxygenases that diverged the paraherquonin and acetoxydehydroaustin pathways in Penicillium brasilianum. J Am Chem Soc 138:12671–12677

Article  PubMed  CAS  Google Scholar 

Nakashima Y, Mori T, Nakamura H, Awakawa T, Hoshino S, Senda M, Senda T, Abe I (2018) Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis. Nat Commun 9: Article number: 104

Cao X, Shi Y, Wu X, Wang K, Huang S, Sun H, Dickschat J, Wu B (2019) Talaromyolides A-D and Talaromytin: Polycyclic Meroterpenoids from the Fungus Talaromyces sp. CX11. Org Lett 21:6539–6542

Article  PubMed  CAS  Google Scholar 

Cao X, Shi Y, Wu S, Wu X, Wang K, Sun H, He S, Dickschat J, Wu B (2020) Polycyclic meroterpenoids, talaromyolides E − K for antiviral activity against pseudorabies virus from the endophytic fungus. Talaromyces purpureogenus Tetrahedron 76:131349

Article  CAS  Google Scholar 

Li X, Awakawa T, Mori T, Ling M, Hu D, Wu B, Abe I (2021) Heterodimeric non-heme iron enzymes in fungal meroterpenoid biosynthesis. J Am Chem Soc 143:21425–21432

Article  PubMed  CAS  Google Scholar 

Jin FJ, Maruyama J, Juvvadi PR, Arioka M, Kitamoto K (2004) Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol Lett 239:79–85

Article  PubMed  CAS  Google Scholar 

Awakawa T, Abe I (2021) Reconstitution of Polyketide-Derived Meroterpenoid Biosynthetic Pathway in Aspergillus oryzae. J Fungi (Basel) 7:486

Article  PubMed  CAS  Google Scholar 

Matsuda Y, Wakimoto T, Mori T, Awakawa T, Abe I (2014) Complete biosynthetic pathway of anditomin: Nature’s sophisticated synthetic route to a complex fungal meroterpenoid. J Am Chem Soc 136:15326–15336

Article  PubMed  CAS  Google Scholar 

Dreier J, Khosla C (2000) Mechanistic analysis of a type II polyketide synthase. Role of conserved residues in the beta-ketoacyl synthase-chain length factor heterodimer. Biochemistry 39:2088–2095

Article  PubMed  CAS  Google Scholar 

Beismann-Driemeyer S, Sterner R (2001) Imidazole glycerol phosphate synthase from Thermotoga maritima. Quaternary structure, steady-state kinetics, and reaction mechanism of the bienzyme complex. J Biol Chem 276:20387–20396

Article  PubMed  CAS  Google Scholar 

Ahmed SA, McPhie P, Miles EW (1996) Mechanism of activation of the tryptophan synthase alpha2beta2 complex. Solvent effects of the co-substrate beta-mercaptoethanol. J Biol Chem 271:29100–29106

Article  PubMed  CAS  Google Scholar 

Brzović PS, Hyde CC, Miles EW, Dunn MF (1993) Characterization of the functional role of a flexible loop in the alpha-subunit of tryptophan synthase from Salmonella typhimurium by rapid-scanning, stopped-flow spectroscopy and site-directed mutagenesis. Biochemistry 32:10404–10413

Article  PubMed  Google Scholar 

Pan P, Dunn MF (1996) Beta-Site covalent reactions trigger transitions between open and closed conformations of the tryptophan synthase bienzyme complex. Biochemistry 35:5002–5013

Article  PubMed  CAS  Google Scholar 

Strambini GB, Cioni P, Peracchi A, Mozzarelli A (1992) Conformational changes and subunit communication in tryptophan synthase: effect of substrates and substrate analogs. Biochemistry 31:7535–7542

Article  PubMed  CAS  Google Scholar 

Ushimaru R, Ding Y, Mori T, Miyamoto K, Uchiyama M, Abe I (2023) Structural and mechanistic insights into the C-C bond-forming rearrangement reaction catalyzed by heterodimeric hinokiresinol synthase. J Am Chem Soc 145:21966–21973

Article  PubMed  CAS  Google Scholar 

Kenney GE, Dassama LMK, Pandelia ME, Gizzi AS, Martinie RJ, Gao P, DeHart CJ, Schachner LF, Skinner OS, Ro SY, Zhu X, Sadek M, Thomas PM, Almo SC, Bollinger JMJr, Krebs C, Kelleher NL, Rosenzweig AC, (2018) The biosynthesis of methanobactin. Science 359:1411–1416

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dou C, Long Z, Li S, Zhou D, Jin Y, Zhang L, Zhang X, Zheng Y, Li L, Zhu X, Liu Z, He S, Yan W, Yang L, Xiong J, Fu X, Qi S, Ren H, Chen S, Dai L, Wang B, Cheng W (2022) Crystal structure and catalytic mechanism of the MbnBC holoenzyme required for methanobactin biosynthesis. Cell Res 32:302–314

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ting CP, Funk MA, Halaby SL, Zhang Z, Gonen T, van der Donk WA (2019) Use of a scaffold peptide in the biosynthesis of amino acid–derived natural products. Science 365:280–284

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ayikpoe RS, Zhu L, Chen JY, Ting CP, van der Donk WA (2023) Macrocyclization and backbone rearrangement during RiPP biosynthesis by a SAM-dependent Doma

Comments (0)

No login
gif