SIRT5: a potential target for discovering bioactive natural products

Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91:1033–1042. https://doi.org/10.1016/s0092-8674(00)80493-6

Article  CAS  PubMed  Google Scholar 

Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295. https://doi.org/10.1146/annurev.pathol.4.110807.092250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mautone N, Zwergel C, Mai A, Rotili D (2020) Sirtuin modulators: where are we now? A review of patents from 2015 to 2019. Expert Opin Ther Pat 30:389–407. https://doi.org/10.1080/13543776.2020.1749264

Article  CAS  PubMed  Google Scholar 

Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 382:790–801. https://doi.org/10.1016/j.jmb.2008.07.048

Article  CAS  PubMed  Google Scholar 

Roessler C, Tüting C, Meleshin M, Steegborn C, Schutkowski M (2015) A Novel Continuous Assay for the Deacylase Sirtuin 5 and Other Deacetylases. J Med Chem 58:7217–7223. https://doi.org/10.1021/acs.jmedchem.5b00293

Article  CAS  PubMed  Google Scholar 

Lv XB, Liu L, Cheng C, Yu B, Xiong L, Hu K, Tang J, Zeng L, Sang Y (2015) SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep 5:17940. https://doi.org/10.1038/srep17940

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D (2023) Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Cells 12(6):852

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahlknecht U, Ho AD, Letzel S, Voelter-Mahlknecht S (2006) Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenet Genome Res 112:208–212. https://doi.org/10.1159/000089872

Article  CAS  PubMed  Google Scholar 

Du Y, Hu H, Hua C, Du K, Wei T (2018) Tissue distribution, subcellular localization, and enzymatic activity analysis of human SIRT5 isoforms. Biochem Biophys Res Commun 503:763–769. https://doi.org/10.1016/j.bbrc.2018.06.073

Article  CAS  PubMed  Google Scholar 

Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN (2007) Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 15:377–389. https://doi.org/10.1016/j.str.2007.02.002

Article  CAS  PubMed  Google Scholar 

Yang L, Ma X, He Y, Yuan C, Chen Q, Li G, Chen X (2017) Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. Sci China Life Sci 60:249–256. https://doi.org/10.1007/s11427-016-0060-7

Article  CAS  PubMed  Google Scholar 

Zhou Y, Zhang H, He B, Du J, Lin H, Cerione RA, Hao Q (2012) The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5). J Biol Chem 287:28307–28314. https://doi.org/10.1074/jbc.M112.384511

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809. https://doi.org/10.1126/science.1207861

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davenport AM, Huber FM, Hoelz A (2014) Structural and functional analysis of human SIRT1. J Mol Biol 426:526–541. https://doi.org/10.1016/j.jmb.2013.10.009

Article  CAS  PubMed  Google Scholar 

Moniot S, Weyand M, Steegborn C (2012) Structures, substrates, and regulators of Mammalian sirtuins - opportunities and challenges for drug development. Front Pharmacol 3:16. https://doi.org/10.3389/fphar.2012.00016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin L, Wei W, Jiang Y, Peng H, Cai J, Mao C, Dai H, Choy W, Bemis JE, Jirousek MR, Milne JC, Westphal CH, Perni RB (2009) Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem 284:24394–24405. https://doi.org/10.1074/jbc.M109.014928

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer F, Gertz M, Suenkel B, Lakshminarasimhan M, Schutkowski M, Steegborn C (2012) Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition. PLoS ONE 7:e45098. https://doi.org/10.1371/journal.pone.0045098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21:2383–2396. https://doi.org/10.1093/emboj/21.10.2383

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stankovic-Valentin N, Deltour S, Seeler J, Pinte S, Vergoten G, Guerardel C, Dejean A, Leprince D (2007) An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol Cell Biol 27:2661–2675. https://doi.org/10.1128/MCB.01098-06

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q (2012) Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31:1546–1557. https://doi.org/10.1038/onc.2011.347

Article  CAS  PubMed  Google Scholar 

Yang Y, Hou H, Haller EM, Nicosia SV, Bai W (2005) Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J 24:1021–1032. https://doi.org/10.1038/sj.emboj.7600570

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380. https://doi.org/10.1038/sj.emboj.7600244

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD, Chen J (2006) Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8:1025–1031. https://doi.org/10.1038/ncb1468

Article  CAS  PubMed  Google Scholar 

Jeong J, Juhn K, Lee H, Kim SH, Min BH, Lee KM, Cho MH, Park GH, Lee KH (2007) SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med 39:8–13. https://doi.org/10.1038/emm.2007.2

Article  CAS  PubMed  Google Scholar 

Latorre-Muro P, Baeza J, Armstrong EA, Hurtado-Guerrero R, Corzana F, Wu LE, Sinclair DA, Lopez-Buesa P, Carrodeguas JA, Denu JM (2018) Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Mol Cell 71(718–732):e9. https://doi.org/10.1016/j.molcel.2018.07.031

Article  CAS  Google Scholar 

Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38:864–878. https://doi.org/10.1016/j.molcel.2010.05.023

Article  CAS 

Comments (0)

No login
gif