RNA sequencing reveals circular RNA expression patterns in chronic intermittent hypoxia

Labarca G, Gower J, Lamperti L, et al. Chronic intermittent hypoxia in obstructive sleep apnea: a narrative review from pathophysiological pathways to a precision clinical approach. Sleep Breath. 2020;24:751–60.

Article  PubMed  Google Scholar 

Liu X, Ma Y, Ouyang R, et al. The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J Neuroinflamm. 2020;17:229.

Article  Google Scholar 

Hunyor I, Cook KM. Models of intermittent hypoxia and obstructive sleep apnea: molecular pathways and their contribution to cancer. Am J Physiol Regul Integr Comp Physiol. 2018;315:669–87.

Article  Google Scholar 

Beaudin AE, Waltz X, Hanly PJ, Poulin MJ. Impact of obstructive sleep apnoea and intermittent hypoxia on cardiovascular and cerebrovascular regulation. Exp Physiol. 2017;102:743–63.

Article  CAS  PubMed  Google Scholar 

Marciante AB, Shell B, Farmer GE, Cunningham JT. Role of angiotensin ii in chronic intermittent hypoxia-induced hypertension and cognitive decline. Am J Physiol Regul Integr Comp Physiol. 2021;320:519–25.

Article  Google Scholar 

Kiernan EA, Smith SM, Mitchell GS, Watters JJ. Mechanisms of microglial activation in models of inflammation and hypoxia: implications for chronic intermittent hypoxia. J Physiol. 2016;594:1563–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen PS, Chiu WT, Hsu PL, et al. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci. 2020;27:63.

Article  PubMed  PubMed Central  Google Scholar 

Chen LD, Chen Q, Lin XJ, et al. Effect of chronic intermittent hypoxia on gene expression profiles of rat liver: a better understanding of osa-related liver disease. Sleep Breath. 2020;24:761–70.

Article  PubMed  Google Scholar 

Zhou WY, Cai ZR, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19:172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular rnas. Nat Rev Genet. 2019;20:675–91.

Article  CAS  PubMed  Google Scholar 

Chen YC, Hsu PY, Hsiao CC. Epigenetics: a potential mechanism involved in the pathogenesis of various adverse consequences of obstructive sleep apnea. Int J Mol Sci. 2019;20:2937.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Lin G, Huang J, et al. Expression profile of long non-coding rnas in rat models of osa-induced cardiovascular disease: new insight into pathogenesis. Sleep Breath. 2019;23:795–804.

Article  PubMed  Google Scholar 

Liu KX, Chen GP, Lin PL, et al. Detection and analysis of apoptosis- and autophagy-related mirnas of mouse vascular endothelial cells in chronic intermittent hypoxia model. Life Sci. 2018;193:194–9.

Article  CAS  PubMed  Google Scholar 

Gao H, Han Z, Huang S, et al. Intermittent hypoxia caused cognitive dysfunction relate to mirnas dysregulation in hippocampus. Behav Brain Res. 2017;335:80–7.

Article  CAS  PubMed  Google Scholar 

Hu C, Li J, Du Y, et al. Impact of chronic intermittent hypoxia on the long non-coding rna and mrna expression profiles in myocardial infarction. J Cell Mol Med. 2021;25:421–33.

Article  CAS  PubMed  Google Scholar 

Santamaria-Martos F, Benítez I. Circulating microrna profile as a potential biomarker for obstructive sleep apnea diagnosis. Sci Rep. 2019;9:13456.

Article  PubMed  PubMed Central  Google Scholar 

Yang X, Niu X, Xiao Y, et al. Mirna expression profiles in healthy osahs and osahs with arterial hypertension: potential diagnostic and early warning markers. Respir Res. 2018;19:194.

Article  PubMed  PubMed Central  Google Scholar 

Yousefi H, Maheronnaghsh M, Molaei F, et al. Long noncoding rnas and exosomal lncrnas: classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene. 2020;39:953–74.

Article  CAS  PubMed  Google Scholar 

Kim D, Langmead B, Salzberg SL. Hisat: a fast spliced aligner with low memory requirements. 2015;12:357–60.

Gao Y, Wang J, Zhao F. Ciri: An efficient and unbiased algorithm for de novo circular rna identification. Genome Biol. 2015;16:4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hardwick SA, Chen WY, Wong T, et al. Spliced synthetic genes as internal controls in rna sequencing experiments. Nat Methods. 2016;13:792–8.

Article  CAS  PubMed  Google Scholar 

Oksanen J. Vegan: community ecology package. R package version 1.8-5. 2007. http://www.cran.r-project.org.

Wang L, Feng Z, Wang X, et al. Degseq: an r package for identifying differentially expressed genes from rna-seq data. Bioinformatics. 2010;26:136–8.

Article  PubMed  Google Scholar 

Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating go graph structure. Bioinformatics. 2006;22:1600–7.

Article  CAS  PubMed  Google Scholar 

Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mateika JH, Komnenov D. Intermittent hypoxia initiated plasticity in humans: a multipronged therapeutic approach to treat sleep apnea and overlapping co-morbidities. Exp Neurol. 2017;287:113–29.

Article  PubMed  Google Scholar 

Polotsky VY, Rubin AE, Balbir A, et al. Intermittent hypoxia causes rem sleep deficits and decreases eeg delta power in nrem sleep in the c57bl/6j mouse. Sleep Med. 2006;7:7–16.

Article  PubMed  Google Scholar 

Peng Y-J, Nanduri J, Khan SA, et al. Hypoxia-inducible factor 2α (hif-2α) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci. 2011;108:3065–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Zhang Y, Chen Y, et al. Cell-autonomous autophagy protects against chronic intermittent hypoxia induced sensory nerves and endothelial dysfunction of the soft palate. Med Sci Monit. 2020;26: 920878.

Google Scholar 

Zheng D, Cao T, Zhang LL, et al. Targeted inhibition of calpain in mitochondria alleviates oxidative stress-induced myocardial injury. Acta Pharmacol Sin. 2021;42:909–20.

Article  CAS  PubMed  Google Scholar 

Knyazev EN, Petrov VA, Gazizov IN, et al. Oxyquinoline-dependent changes in claudin-encoding genes contribute to impairment of the barrier function of the trophoblast monolayer. Bull Exp Biol Med. 2019;166:369–72.

Article  CAS  PubMed  Google Scholar 

Luk’yanova LD, Kirova YI, Germanova EL. Peculiarities of immediate response of respiratory chain enzymes in rat cerebral cortex to hypoxia. Bull Exp Biol Med. 2019;166:426–31.

Article  CAS  PubMed  Google Scholar 

Lukyanova L, Germanova E, Khmil N, et al. Signaling role of mitochondrial enzymes and ultrastructure in the formation of molecular mechanisms of adaptation to hypoxia. Int J Mol Sci. 2021;22:

Yang X, Ren W, Shao Y, Chen Y. Mir-466b-1-3p regulates p-glycoprotein expression in rat cerebral microvascular endothelial cells. Neurosci Lett. 2017;645:60–6.

Article  CAS  PubMed  Google Scholar 

Su X, Xiao D, Huang L, et al. Microrna alteration in developing rat oligodendrocyte precursor cells induced by hypoxia-ischemia. J Neuropathol Exp Neurol. 2019;78:900–9.

Article  CAS  PubMed 

Comments (0)

No login
gif