The diverse sleep structure of mid-day nap in college students

Faraut B, Andrillon T, Vecchierini MF, Leger D. Napping: a public health issue. From epidemiological to laboratory studies. Sleep Med Rev. 2017;35:85–100.

Article  PubMed  Google Scholar 

National Sleep Foundation. Communications technology in the bedroom. 2011. http://www.sleepfoundation.org/sites/default/files/sleepinamericapoll/SIAP_2011_Summary_of_Findings.pdf. Accessed 5 Nov 2013.

Chen Y, Kartsonaki C, Clarke R, et al. Characteristics and correlates of sleep duration, daytime napping, snoring and insomnia symptoms among 0.5 million Chinese men and women. Sleep Med. 2018;44:67–75.

Article  PubMed  PubMed Central  Google Scholar 

Zhao D, Zhang Q, Fu M, et al. Effects of physical positions on sleep architectures and post-nap functions among habitual nappers. Biol Psychol. 2010;83:207–13.

Article  PubMed  Google Scholar 

Aghayan GH, Leong R, Ghorbani S, et al. A sleep schedule incorporating naps benefits the transformation of hierarchical knowledge. Sleep. 2022;45:zsac25.

Google Scholar 

Mantua J, Spencer R. Exploring the nap paradox: are mid-day sleep bouts a friend or foe? Sleep Med. 2017;37:88–97.

Article  PubMed  PubMed Central  Google Scholar 

Trotti LM. Waking up is the hardest thing I do all day: sleep inertia and sleep drunkenness. Sleep Med Rev. 2017;35:76–84.

Article  PubMed  Google Scholar 

Alger SE, Lau H, Fishbein W. Slow wave sleep during a daytime nap is necessary for protection from subsequent interference and long-term retention. Neurobiol Learn Mem. 2012;98:188–96.

Article  PubMed  Google Scholar 

Lau EY, Wong ML, Lau KN, et al. Rapid-eye-movement-sleep (REM) associated enhancement of working memory performance after a daytime nap. PLoS ONE. 2015;10: e125752.

Article  Google Scholar 

Tassi P, Muzet A. Sleep inertia. Sleep Med Rev. 2000;4:341–53.

Article  PubMed  Google Scholar 

Scammell TE, Arrigoni E, Lipton JO. Neural circuitry of wakefulness and sleep. Neuron. 2017;93:747–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bes FW, Jobert M, Cordula ML, Schulz H. The diurnal distribution of sleep propensity: experimental data about the interaction of the propensities for slow-wave sleep and REM sleep. J Sleep Res. 1996;5:90–8.

Article  CAS  PubMed  Google Scholar 

Evans FJ, Cook MR, Cohen HD, et al. Appetitive and replacement naps: EEG and behavior. Science. 1977;197:687–9.

Article  CAS  PubMed  Google Scholar 

McDevitt EA, Alaynick WA, Mednick SC. The effect of nap frequency on daytime sleep architecture. Physiol Behav. 2012;107:40–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leong R, Yu N, Ong JL. Memory performance following napping in habitual and non-habitual nappers. Sleep. 2020;44(6):zsaa277.

Article  PubMed Central  Google Scholar 

Milner CE, Fogel SM, Cote KA. Habitual napping moderates motor performance improvements following a short daytime nap. Biol Psychol. 2006;73:141–56.

Article  PubMed  Google Scholar 

Tsai PS, Wang SY, Wang MY, et al. Psychometric evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects. Qual Life Res. 2005;14:1943–52.

Article  CAS  PubMed  Google Scholar 

Short MA, Arora T, Gradisar M, et al. How many sleep diary entries are needed to reliably estimate adolescent sleep? Sleep. 2017. https://doi.org/10.1093/sleep/zsx006.

Article  PubMed  PubMed Central  Google Scholar 

Buysse DJ, Reynolds CR, Monk TH, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213.

Article  CAS  PubMed  Google Scholar 

Ma H, Li Y, Liang H, et al. Sleep deprivation and a non-24-h working schedule lead to extensive alterations in physiology and behavior. Faseb J. 2019;33:6969–79.

Article  CAS  PubMed  Google Scholar 

Berry RB, Quan SF, Abreu AR, et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifcations. Darien: American Academy of Sleep Medicine; 2020.

Google Scholar 

Cairns A, Bogan R. Comparison of the macro and microstructure of sleep in a sample of sleep clinic hypersomnia cases. Neurobiol Sleep Circadian Rhythms. 2019;6:62–9.

Article  PubMed  PubMed Central  Google Scholar 

Daimon T. Box-Cox transformation. In: International encyclopedia of statistical science. Berlin: Springer; 2011. p. 176–8.

Chapter  Google Scholar 

Qian L, Ru T, He M, et al. Effects of a brief afternoon nap on declarative and procedural memory. Neurobiol Learn Mem. 2022;194: 107662.

Article  PubMed  Google Scholar 

Akerstedt T, Hume K, Minors D, Waterhouse J. Experimental separation of time of day and homeostatic influences on sleep. Am J Physiol. 1998;274:R1162–8.

CAS  PubMed  Google Scholar 

Wang Y, Vlemincx E, Vantieghem I, et al. Bottom-up and cognitive top-down emotion regulation: experiential emotion regulation and cognitive reappraisal on stress relief and follow-up sleep physiology. Int J Environ Res Public Health. 2022;19:7621.

Article  PubMed  PubMed Central  Google Scholar 

Cerasuolo M, Conte F, Giganti F, Ficca G. Sleep changes following intensive cognitive activity. Sleep Med. 2020;66:148–58.

Article  PubMed  Google Scholar 

Ong JL, Lo JC, Patanaik A, Chee M. Trait-like characteristics of sleep EEG power spectra in adolescents across sleep opportunity manipulations. J Sleep Res. 2019;28: e12824.

Article  PubMed  PubMed Central  Google Scholar 

Bakotic M, Radosevic-Vidacek B, Koscec BA. Morningness-eveningness and daytime functioning in university students: the mediating role of sleep characteristics. J Sleep Res. 2017;26:210–8.

Article  PubMed  Google Scholar 

Keklund G, Akerstedt T. Objective components of individual differences in subjective sleep quality. J Sleep Res. 1997;6:217–20.

Article  CAS  PubMed  Google Scholar 

Jewett ME, Wyatt JK, Ritz-De CA, et al. Time course of sleep inertia dissipation in human performance and alertness. J Sleep Res. 1999;8:1–8.

Article  CAS  PubMed  Google Scholar 

Signal TL, van den Berg MJ, Mulrine HM, Gander PH. Duration of sleep inertia after napping during simulated night work and in extended operations. Chronobiol Int. 2012;29:769–79.

Article  PubMed  Google Scholar 

Burke TM, Scheer F, Ronda JM, et al. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions. J Sleep Res. 2015;24:364–71.

Article  PubMed  PubMed Central  Google Scholar 

Vallat R, Meunier D, Nicolas A, Ruby P. Hard to wake up? The cerebral correlates of sleep inertia assessed using combined behavioral, EEG and fMRI measures. Neuroimage. 2019;184:266–78.

Article  PubMed  Google Scholar 

Sattari N, McDevitt EA, Panas D, et al. The effect of sex and menstrual phase on memory formation during a nap. Neurobiol Learn Mem. 2017;145:119–28.

Article  PubMed  Google Scholar 

Bermudez EB, Klerman EB, Czeisler CA, et al. Prediction of vigilant attention and cognitive performance using self-reported alertness, circadian phase, hours since awakening, and accumulated sleep loss. PLoS ONE. 2016;11: e151770.

Article 

Comments (0)

No login
gif