Hastings MH, Smyllie NJ, Patton AP. Molecular-genetic manipulation of the suprachiasmatic nucleus circadian clock. J Mol Biol. 2020;432(12):3639–60.
Article CAS PubMed Google Scholar
Pham L, Baiocchi L, Kennedy L, et al. The interplay between mast cells, pineal gland, and circadian rhythm: links between histamine, melatonin, and inflammatory mediators. J Pineal Res. 2021;70(2): e12699.
Article CAS PubMed Google Scholar
Reddy S, Reddy V, Sharma S. Physiology, circadian rhythm. Treasure Island: StatPearls; 2018.
Hsing AW, Meyer TE, Niwa S, et al. Measuring serum melatonin in epidemiologic studies. Cancer Epidemiol Biomarkers Prev. 2010;19(4):932–7.
Article CAS PubMed PubMed Central Google Scholar
Fukada Y, Okano T. Circadian clock system in the pineal gland. Mol Neurobiol. 2002;25:19–30.
Article CAS PubMed Google Scholar
Shin J-W. Neuroprotective effects of melatonin in neurodegenerative and autoimmune central nervous system diseases. Encephalitis. 2023;3(2):44.
Article PubMed PubMed Central Google Scholar
Jana T, Tzveta S, Zlatina N, et al. Effect of endurance training on diurnal rhythms of superoxide dismutase activity, glutathione and lipid peroxidation in plasma of pinealectomized rats. Neurosci Lett. 2020;716:134637.
Article CAS PubMed Google Scholar
Golombek DA, Casiraghi LP, Agostino PV, et al. The times they’re a-changing: effects of circadian desynchronization on physiology and disease. J Physiol-Paris. 2013;107(4):310–22.
Barbosa-Méndez S, Salazar-Juárez A. Melatonin decreases cocaine-induced locomotor activity in pinealectomized rats. Braz J Psychiatry. 2019;42:295–308.
Article PubMed PubMed Central Google Scholar
Wai MGC, Jun WWW, Yee YAP, et al. A review of pinealectomy-induced melatonin-deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. Int J Mol Sci. 2014;15(9):16484–99.
Article PubMed Central Google Scholar
Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. Environ Sci Pollut Res. 2020;27(21):26036–57.
Florentino SA, Bawany MH, Ma HM. Acetylcholinesterase inhibitors to enhance recovery from traumatic brain injury: a comprehensive review and case series. Brain Inj. 2022;36(4):441–54.
Lane RM, Kivipelto M, Greig NH. Acetylcholinesterase and its inhibition in Alzheimer disease. Clin Neuropharmacol. 2004;27(3):141–9.
Article CAS PubMed Google Scholar
Donat CK, Schuhmann MU, Voigt C, et al. Alterations of acetylcholinesterase activity after traumatic brain injury in rats. Brain Inj. 2007;21(10):1031–7.
Ferdosi Khosroshahi A, Bakhtiari M, Soleimani Rad J, et al. Study of the effect of exogenous melatonin on sperm fertility in busulfan induced oligospermic of pinealectomeized rat. Razi J Med Sci. 2013;20(110):77–86.
Canpolat S, Sandal S, Yilmaz B, et al. Effects of pinealectomy and exogenous melatonin on serum leptin levels in male rat. Eur J Pharmacol. 2001;428(1):145–8.
Article CAS PubMed Google Scholar
Özmen M, Dominguez S, Fairbrother A. Effects of dietary azinphos methyl on selected plasma and tissue biomarkers of the gray-tailed vole. Bull Environ Contam Toxicol. 1998;60(2):194–201.
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–9.
Article CAS PubMed Google Scholar
Santhoshkumar P, Shivanandappa T. In vitro sequestration of two organophosphorus homologs by the rat liver. Chem Biol Interact. 1999;119:277–82.
Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966;16(2):359–64.
Article CAS PubMed Google Scholar
Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta Gen Subj. 1979;582(1):67–78.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
Article CAS PubMed Google Scholar
Altinoz E, Erdemli M, Gul M, et al. Neuroprotection against CCl4 induced brain damage with crocin in Wistar rats. Biotech Histochem. 2018;93(8):623–31.
Article CAS PubMed Google Scholar
Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71:2997–3025.
Article PubMed PubMed Central Google Scholar
Bicer Y, Elbe H, Karayakali M, et al. Neuroprotection by melatonin against acrylamide-induced brain damage in pinealectomized rats. J Chem Neuroanat. 2022;125:102143.
Article CAS PubMed Google Scholar
Bubenik GA, Brown GM. Pinealectomy reduces melatonin levels in the serum but not in the gastrointestinal tract of rats. Neurosignals. 2004;6(1):40–4.
Tasdemir S, Samdanci E, Parlakpinar H, et al. Effects of pinealectomy and exogenous melatonin on the brains, testes, duodena and stomachs of rats. Eur Rev Med Pharmacol Sci. 2012;16(7):860–6.
Baydas G, Gursu MF, Yilmaz S, et al. Daily rhythm of glutathione peroxidase activity, lipid peroxidation and glutathione levels in tissues of pinealectomized rats. Neurosci Lett. 2002;323(3):195–8.
Article CAS PubMed Google Scholar
Ates O, Cayli S, Gurses I, et al. Effect of pinealectomy and melatonin replacement on morphological and biochemical recovery after traumatic brain injury. Int J Dev Neurosci. 2006;24(6):357–63.
Article CAS PubMed Google Scholar
Vaknine S, Soreq H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacol. 2020;168:108020.
Pulkrabkova L, Svobodova B, Konecny J, et al. Neurotoxicity evoked by organophosphates and available countermeasures. Arch Toxicol. 2023;97(1):39–72.
Article CAS PubMed Google Scholar
He N, Yu L, Xu M, et al. Near-infrared fluorescent probe for evaluating the acetylcholinesterase effect in the aging process and dietary restriction via fluorescence imaging. J Mater Chem B. 2021;9(11):2623–30.
Article CAS PubMed Google Scholar
Labban S, Alghamdi BS, Alshehri FS, Kurdi M. Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer’s disease. Behav Brain Res. 2021;402:113100.
Article CAS PubMed Google Scholar
Roy J, Tsui KC, Ng J, et al. Regulation of melatonin and neurotransmission in Alzheimer’s disease. Int J Mol Sci. 2021;22(13):6841.
Comments (0)