Bruni O. Approach to a sleepy child: Diagnosis and treatment of excessive daytime sleepiness in children and adolescents. Eur J Paediatr Neurol. 2023;42:97–109. https://doi.org/10.1016/j.ejpn.2022.12.009.
Owens JA, Babcock D, Weiss M. Evaluation and treatment of children and adolescents with excessive daytime sleepiness. Clin Pediatr (Phila). 2020;59(4–5):340–51. https://doi.org/10.1177/0009922820903434.
Voci A, Bruni O, Ferilli MAN, Papetti L, Tarantino S, Ursitti F, et al. Sleep disorders in pediatric migraine: A questionnaire-based study. J Clin Med. 2021. https://doi.org/10.3390/jcm10163575.
Article PubMed PubMed Central Google Scholar
Bloom BJ, Owens JA, McGuinn M, Nobile C, Schaeffer L, Alario AJ. Sleep and its relationship to pain, dysfunction, and disease activity in juvenile rheumatoid arthritis. J Rheumatol. 2002;29(1):169–73.
Krahn LE, Zee PC, Thorpy MJ. Current understanding of narcolepsy 1 and its comorbidities: what clinicians need to know. Adv Ther. 2022;39(1):221–43. https://doi.org/10.1007/s12325-021-01992-4.
Kacar Bayram A, Per H, Ismailoǧullari S, Canpolat M, Gumus H, Aksu M. Efficiency of a combination of pharmacological treatment and nondrug interventions in childhood narcolepsy. Neuropediatrics. 2016;47(6):380–7. https://doi.org/10.1055/s-0036-1588019.
Article CAS PubMed Google Scholar
Drake C, Nickel C, Burduvali E, Roth T, Jefferson C, Badia P. The pediatric daytime sleepiness scale (PDSS): sleep habits and school outcomes in middle-school children. Sleep. 2003;26(4):455–8.
Patel N, Berggren KN, Hung M, Bates K, Dixon MM, Bax K, et al. Neurobehavioral phenotype of children with congenital myotonic dystrophy. Neurology. 2024;102(5):e208115. https://doi.org/10.1212/WNL.0000000000208115.
Article PubMed PubMed Central Google Scholar
Meyer C, Barbosa DG, Junior GJF, Andrade RD, Silva DAS, Pelegrini A, et al. Proposal of cutoff points for pediatric daytime sleepiness scale to identify excessive daytime sleepiness. Chronobiol Int. 2018;35(3):303–11. https://doi.org/10.1080/07420528.2017.1400980.
Bektas M, Bektas I, Ayar D, Selekoglu Y, Ayar U, Kudubes AA, et al. Psychometric properties of Turkish version of pediatric daytime sleepiness scale (PDSS-T). Asian Nurs Res. 2016;10(1):62–7. https://doi.org/10.1016/j.anr.2016.01.002.
Meyer C, Ferrari GJ, Barbosa DG, Andrade RD, Pelegrini A, Felden EPG. Analysis of daytime sleepiniess in adolescents by the pediatric daytime sleepiness scale: a systematic review. Rev Paul Pediatr. 2017;35(3):351–60. https://doi.org/10.1590/1984.0462/;2017;35;3;00015.
Article PubMed PubMed Central Google Scholar
Meyer C, Ferrari Junior GJ, Andrade RD, Barbosa DG, da Silva RC, Pelegrini A, et al. Factors associated with excessive daytime sleepiness among Brazilian adolescents. Chronobiol Int. 2019;36(9):1240–8. https://doi.org/10.1080/07420528.2019.1633661.
Ferrari Junior GJ, Drake CL, Barbosa DG, Diego Andrade R, Santos Silva DA, Érico Pereira GF. Factor structure of the Brazilian version of Pediatric Daytime Sleepiness Scale. Chronobiol Int. 2018;35(8):1088–94. https://doi.org/10.1080/07420528.2018.1458732.
Felden ÉPG, Carniel JD, Andrade RD, Pelegrini A, Anacleto TS, Louzada FM. Translation and validation of the pediatric daytime sleepiness scale (PDSS) into Brazilian Portuguese. J Pediatr. 2016;92(2):168–73. https://doi.org/10.1016/j.jped.2015.05.008.
Zakharov IM, Ismatullina VI, Kolyasnikov PV, Marakshina JA, Malykh AS, Tabueva AO, et al. An independent evaluation of the psychometric properties of the Russian version of the Pediatric daytime sleepiness scale (PDSS). Psychol Russ State Art. 2023;16(3):206–21. https://doi.org/10.11621/PIR.2023.0314.
López-Ibáñez C, López-Nicolás R, Blázquez-Rincón DM, Sánchez-Meca J. Reliability generalization meta-analysis: comparing different statistical methods. Curr Psychol. 2024. https://doi.org/10.1007/s12144-023-05604-y.
Sánchez-Meca J, Marín-Martínez F, López-López JA, Núñez-Núñez RM, Rubio-Aparicio M, López-García JJ, et al. Improving the reporting quality of reliability generalization meta-analyses: The REGEMA checklist. Res Synth Methods. 2021;12(4):516–36. https://doi.org/10.1002/jrsm.1487.
Mokkink LB, Prinsen CA, Bouter LM, Vet HC, Terwee CB. The COnsensus-based standards for the selection of health Measurement INstruments (COSMIN) and how to select an outcome measurement instrument. Braz J Phys Ther. 2016;20(2):105–13. https://doi.org/10.1590/bjpt-rbf.2014.0143.
Article PubMed PubMed Central Google Scholar
McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021;12(1):55–61. https://doi.org/10.1002/jrsm.1411.
Schwarzer G. meta: An R package for meta-analysis. R news. 2007;7(3):40–5.
Baker WL, Michael White C, Cappelleri JC, Kluger J, Coleman CI, et al. Understanding heterogeneity in meta-analysis: the role of meta-regression. Int J Clin Pract. 2009;63(10):1426–34.
Article CAS PubMed Google Scholar
Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193.
Mathur MB, VanderWeele TJ. Sensitivity analysis for publication bias in meta-analyses. J R Stat Soc Ser C Appl Stat. 2020;69(5):1091–119. https://doi.org/10.1111/rssc.12440.
Article PubMed PubMed Central Google Scholar
Viechtbauer W, Cheung MW. Outlier and influence diagnostics for meta-analysis. Res Synth Methods. 2010;1(2):112–25. https://doi.org/10.1002/jrsm.11.
Sterne JA, Becker BJ, Egger M. The funnel plot. Publication bias in meta‐analysis: Prevention, assessment and adjustments. 2005;73–98. https://doi.org/10.1002/0470870168.ch5
Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics. 2018;74(3):785–94. https://doi.org/10.1111/biom.12817.
van Aert RCM, Wicherts JM, van Assen M. Publication bias examined in meta-analyses from psychology and medicine: A meta-meta-analysis. PLoS ONE. 2019;14(4):e0215052. https://doi.org/10.1371/journal.pone.0215052.
Article CAS PubMed PubMed Central Google Scholar
Tsilidis KK, Papatheodorou SI, Evangelou E, Ioannidis JPA. Evaluation of excess statistical significance in meta-analyses of 98 biomarker associations with cancer risk. JNCI J Natl Cancer Inst. 2012;104(24):1867–78. https://doi.org/10.1093/jnci/djs437.
Article CAS PubMed Google Scholar
Kavvoura FK, McQueen MB, Khoury MJ, Tanzi RE, Bertram L, Ioannidis JP. Evaluation of the potential excess of statistically significant findings in published genetic association studies: application to Alzheimer’s disease. Am J Epidemiol. 2008;168(8):855–65. https://doi.org/10.1093/aje/kwn206.
Article PubMed PubMed Central Google Scholar
Viechtbauer W, Viechtbauer MW. Package ‘metafor’. The Comprehensive R Archive Network Package ‘metafor’. 2015. https://repositorio.ulisboa.pt/bitstream/10451/8980/1/679077_Tese.pdf. https://doi.org/10.32614/cran.package.metafor
Randler C, Kolomeichuk SN, Morozov AV, Petrashova DA, Pozharskaya VV, Martynova AA, et al. Psychometric properties of the Russian version of the Pediatric Daytime Sleepiness Scale (PDSS). Heliyon. 2019. https://doi.org/10.1016/j.heliyon.2019.e02134.
Article PubMed PubMed Central Google Scholar
Komada Y, Breugelmans R, Drake CL, Nakajima S, Tamura N, Tanaka H, et al. Social jetlag affects subjective daytime sleepiness in school-aged children and adolescents: A study using the Japanese version of the Pediatric Daytime Sleepiness Scale (PDSS-J). Chronobiol Int. 2016;33(10):1311–9. https://doi.org/10.1080/07420528.2016.1213739.
Moreno T. Estudo da sonolência diurna e hábitos de sono numa população escolar dos 11–15 anos: validação em português da" Pediatric Daytime Sleepiness Scale". Universidade de Lisboa (Portugal); 2012.
Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: a systematic review and meta-analysis. Sleep Med Rev. 2016;25:52–73. https://doi.org/10.1016/j.smrv.2015.01.009.
Comments (0)