Exploring the Therapeutic Potential of Esculetin in Mitigating Cyclophosphamide-Induced Hepato-Toxicity

Kumar R, Dhingra MK. Burden of cancer: an Indian. Perspective. 2020;5(3):120–1. https://doi.org/10.18231/2394-2738.2018.0027.

Article  Google Scholar 

Komolafe OA, Arayombo BE, Abiodun AA, Saka OS, Abijo AZ, Ojo SK, Fakunle OO. Immunohistochemical and histological evaluations of cyclophosphamide-induced acute cardiotoxicity in Wistar rats: the role of turmeric extract (Curcuma). Morphologie. 2020;104(345):133–42. https://doi.org/10.1016/j.morpho.2019.10.047.

Article  CAS  PubMed  Google Scholar 

Al Shaima G, Samaha MM, AbdElrazik NA. Cytoprotective effects of cinnamaldehyde and adipoRon against cyclophosphamide-induced cardio-renal toxicity in rats: insights into oxidative stress, inflammation, and apoptosis. Int Immunopharmacol. 2023;124:111044. https://doi.org/10.1016/j.intimp.2023.111044.

Article  CAS  Google Scholar 

Teles KA, Medeiros-Souza P, Lima FAC, Araújo BG, Lima RAC. Cyclophosphamide administration routine in autoimmune rheumatic diseases: a review. Rev Bras Reumatol. 2017;57(6):596–604. https://doi.org/10.1016/j.rbre.2016.09.008.

Article  Google Scholar 

Barnett S, Errington J, Sludden J, Jamieson D, Poinsignon V, Paci A, Veal GJ. Pharmacokinetics and pharmacogenetics of cyclophosphamide in a neonate and infant childhood cancer patient population. Pharmaceuticals. 2021;14(3):272. https://doi.org/10.3390/ph14030272.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kehrer JP, Biswal SS. The molecular effects of acrolein. Toxicol Sci. 2000;57(1):6–15. https://doi.org/10.1093/toxsci/57.1.6.

Article  CAS  PubMed  Google Scholar 

Al-Salih HA, Al-Sharafi NM, Al-Qabi SS, Al-Darwesh AA. The pathological features of cyclophosphamide-induced multi-organ toxicity in male Wistar rats. Syst Rev Pharm. 2020;11(6):45–9. https://doi.org/10.31838/srp.2020.6.10.

Article  CAS  Google Scholar 

Peng X, Zhang X, Wang C, Olatunji OJ. Protective effects of asperuloside against cyclophosphamide-induced urotoxicity and hematotoxicity in rats. Open Chem. 2022;20(1):1444–50. https://doi.org/10.1515/chem-2022-0234.

Article  CAS  Google Scholar 

DeChiara JR, Birch EM, Harper H. Low-dose cyclophosphamide associated with hyponatremia and hepatotoxicity. Cureus. 2023. https://doi.org/10.7759/cureus.44903.

Article  PubMed  PubMed Central  Google Scholar 

Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 1995;333(17):1118–27. https://doi.org/10.1056/NEJM199510263331706.

Article  CAS  PubMed  Google Scholar 

Oyagbemi AA, Omobowale OT, Asenuga ER, Akinleye AS, Ogunsanwo RO, Saba AB. Cyclophosphamide-induced hepatotoxicity in Wistar rats: the modulatory role of gallic acid as a hepatoprotective and chemopreventive phytochemical. Int J Prev Med. 2016;7(1):51. https://doi.org/10.4103/2008-7802.177898.

Article  PubMed  PubMed Central  Google Scholar 

Guruvayoorappan C, Kuttan G. Evaluation of the chemoprotective effect of Biophytum sensitivum (L.) DC extract against cyclophosphamide-induced toxicity in Swiss albino mice. Drug Metab Drug Interact. 2007;22(2–3):131–50. https://doi.org/10.1515/DMDI.2007.22.2-3.131.

Article  CAS  Google Scholar 

El-Naggar SA, Abdel-Farid IB, Germoush MO, Elgebaly HA, Alm-Eldeen AA. Efficacy of Rosmarinus officinalis leaves extract against cyclophosphamide-induced hepatotoxicity. Pharm Biol. 2016;54(10):2007–16. https://doi.org/10.3109/13880209.2015.1137954.

Article  CAS  PubMed  Google Scholar 

Khodeer DM, Mehanna ET, Abushouk AI, Abdel-Daim MM. Protective effects of evening primrose oil against cyclophosphamide-induced biochemical, histopathological, and genotoxic alterations in mice. Pathogens. 2020;9(2):98. https://doi.org/10.3390/pathogens9020098.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Şengül E, Gelen V, Gedikli S, Özkanlar S, Gür C, Çelebi F, et al. The protective effect of quercetin on cyclophosphamide-Induced lung toxicity in rats. Biomed Pharmacother. 2017;92:303–7. https://doi.org/10.1016/j.biopha.2017.05.047.

Article  CAS  PubMed  Google Scholar 

Garg SS, Gupta J, Sahu D, Liu CJ. Pharmacological and therapeutic applications of esculetin. Int J Mol Sci. 2022;23(20):12643. https://doi.org/10.3390/ijms232012643.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shyam M, Sabina EP. Harnessing the power of Arctium lappa root: a review of its pharmacological properties and therapeutic applications. Nat Prod Bioprospect. 2024;14(1):49. https://doi.org/10.1007/s13659-024-00466-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung WK, Park SB, Yu HY, Kim YH, Kim J. Effect of esculetin on tert-butyl hydroperoxide-induced oxidative injury in retinal pigment epithelial cells in vitro. Molecules. 2022;27(24):8970. https://doi.org/10.3390/molecules27248970.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra PS, Kumar A, Kaur K, Jaitak V. Recent developments in coumarin derivatives as neuroprotective agents. Curr Med Chem. 2024;31(35):5702–38. https://doi.org/10.2174/0929867331666230714160047.

Article  CAS  PubMed  Google Scholar 

Jayakumar T, Huang CJ, Yen TL, Hsia CW, Sheu JR, Bhavan PS, Hsia CH. Activation of Nrf2 by esculetin mitigates inflammatory responses through suppression of NF-κB signaling cascade in RAW 264.7 cells. Molecules. 2022;27(16):5143. https://doi.org/10.3390/molecules27165143.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma J, Deng Y, Yang T, Li M, Shang J. Esculetin alleviates nonalcoholic fatty liver disease on high-cholesterol-diet-induced larval zebrafish and FFA-induced BRL-3A hepatocyte. Int J Mol Sci. 2023;24(2):1593. https://doi.org/10.3390/ijms24021593.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo Y, Chang T, Huang S, Xiang J, Tang S, Shen H. Protective effects and mechanisms of esculetin against H₂O₂-induced oxidative stress, apoptosis, and pyroptosis in human hepatoma HepG2 cells. Molecules. 2024;29(7):1415. https://doi.org/10.3390/molecules29071415.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x.

Article  CAS  PubMed  Google Scholar 

Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389–94. https://doi.org/10.1016/0003-2697(72)90132-7.

Article  CAS  PubMed  Google Scholar 

Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase, and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582(1):67–78. https://doi.org/10.1016/0304-4165(79)90289-7.

Article  CAS  PubMed  Google Scholar 

Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588–90. https://doi.org/10.1126/science.179.4073.588.

Article  CAS  PubMed  Google Scholar 

Esterbauer H, Cheeseman KH, Dianzani MU, Poli G, Slater TF. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem J. 1982;208(1):129–40. https://doi.org/10.1042/bj2080129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voelcker G. Mechanism-of-action-based development of new cyclophosphamides. SynBio. 2023;1(2):158–71. https://doi.org/10.3390/synbio1020011.

Comments (0)

No login
gif