The effect of exercise-induced muscle fatigue on gait parameters among older adults: a systematic review and meta-analysis

Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228–38. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5035715/.

PubMed  PubMed Central  Google Scholar 

Senefeld J, Yoon T, Hunter SK. Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function. Exp Gerontol. 2017;1(87):74–83.

Google Scholar 

Barbieri FA, dos Santos PCR, Lirani-Silva E, Vitório R, Gobbi LTB, van Diëen JH. Systematic review of the effects of fatigue on spatiotemporal gait parameters. J Back Musculoskelet Rehabil. 2013;26(2):125–31. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospressamp;doi=10.3233/BMR-130371.

Ghamkhar L, Kahlaee AH. The effect of trunk muscle fatigue on postural control of upright stance: A systematic review. Gait Posture. 2019;1(72):167–74.

Google Scholar 

Helbostad JL, Sturnieks DL, Menant J, Delbaere K, Lord SR, Pijnappels M. Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: A systematic literature review. BMC Geriatr. 2010;10(1):56. Available from: http://bmcgeriatr.biomedcentral.com/articles/10.1186/1471-2318-10-56.

Santos PCR dos, Barbieri FA, Zijdewind I, Gobbi LTB, Lamoth C, Hortobágyi T. Effects of experimentally induced fatigue on healthy older adults’ gait: A systematic review. PLoS One. 2019;14(12). Available from: https://pubmed.ncbi.nlm.nih.gov/31887182/.

Chardon M, Barbieri FA, Penedo T, Santos PCR, Vuillerme N. The effects of experimentally-induced fatigue on gait parameters during obstacle crossing: A systematic review. Neurosci Biobehav Rev [Internet]. 2022;142(August):104854. Available from: https://doi.org/10.1016/j.neubiorev.2022.104854.

Nagano H, James L, Sparrow WA, Begg RK. Effects of walking-induced fatigue on gait function and tripping risks in older adults. J Neuroeng Rehabil [Internet]. 2014 Nov 15;11(1):155. Available from: https://pubmed.ncbi.nlm.nih.gov/25399324/

Pana A, Sourtzi P, Kalokairinou A, Pastroudis A, Chatzopoulos ST, Velonaki VS. Association between self-reported or perceived fatigue and falls among older people: A systematic review. Int J Orthop Trauma Nurs. 2021;1(43): 100867.

Google Scholar 

Barbieri FA, Lee YJ, Gobbi LTB, Pijnappels M, Van Dieën JH. The effect of muscle fatigue on the last stride before stepping down a curb. Gait Posture. 2013;37(4):542–6.

PubMed  Google Scholar 

Bahmanbegloo ZH, Budini F, Hassanlouei H, Farsi A, Tilp M. Submaximal fatiguing contractions reduce stability of voluntary postural control more than maximal fatiguing contractions. Gait Posture [Internet]. 2022;92(December 2021):407–12. Available from: https://doi.org/10.1016/j.gaitpost.2021.12.004

Barbieri FA, Gobbi LTB, Lee YJ, Pijnappels M, van Dieën JH. Effect of triceps surae and quadriceps muscle fatigue on the mechanics of landing in stepping down in ongoing gait. Ergonomics. 2014;57(6):934–42.

CAS  PubMed  Google Scholar 

Hatton AL, Menant JC, Lord SR, Lo JCM, Sturnieks DL. The effect of lower limb muscle fatigue on obstacle negotiation during walking in older adults. Gait Posture [Internet]. 2013 Apr;37(4):506–10. Available from: https://pubmed.ncbi.nlm.nih.gov/23021990/

Santos PCR dos, Lamoth CJC, Gobbi LTB, Zijdewind I, Barbieri FA, Hortobágyi T. Older Compared With Younger Adults Performed 467 Fewer Sit-to-Stand Trials, Accompanied by Small Changes in Muscle Activation and Voluntary Force. Front Aging Neurosci [Internet]. 2021 Jun 21;13. Available from: https://pubmed.ncbi.nlm.nih.gov/34267644/

Donath L, Zahner L, Roth R, Fricker L, Cordes M, Hanssen H, et al. Balance and gait performance after maximal and submaximal endurance exercise in seniors: Is there a higher fall-risk? Eur J Appl Physiol. 2013;113(3):661–9.

PubMed  Google Scholar 

Smith JL, Martin PG, Gandevia SC, Taylor JL. Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles. J Appl Physiol [Internet]. 2007;103(2):560–8. Available from: https://www.physiology.org/doi/10.1152/japplphysiol.00220.2007

Boyas S, Remaud A, Rivers E, Bilodeau M. Fatiguing Exercise Intensity Influences the Relationship between Parameters Reflecting Neuromuscular Function and Postural Control Variables. PLoS ONE. 2013;8(8):1–10.

Google Scholar 

Azevedo R de A, Silva-Cavalcante MD, Lima-Silva AE, Bertuzzi R. Fatigue development and perceived response during self-paced endurance exercise: state-of-the-art review. Eur J Appl Physiol [Internet]. 2021 Mar 2;121(3):687–96. Available from: http://link.springer.com/http://link.springer.com/10.1007/s00421-020-04549-5

Thomas K, Elmeua M, Howatson G, Goodall S. Intensity-Dependent Contribution of Neuromuscular Fatigue after Constant-Load Cycling. Med Sci Sports Exerc. 2016;48(9):1751–60.

PubMed  Google Scholar 

Gandevia SC. Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiol Rev [Internet]. 2001 Jan 10;81(4):1725–89. Available from: https://www.physiology.org/doi/10.1152/physrev.2001.81.4.1725

Burgerhout W. Visies op vermoeidheid Deel 3: Perifere factoren - vermoeidheid op spierniveau. Sportgericht. 2018;72(1):12–7.

Google Scholar 

Hunter SK. Performance fatigability: Mechanisms and task specificity. Cold Spring Harb Perspect Med [Internet]. 2018;8(7). Available from: https://pubmed.ncbi.nlm.nih.gov/28507192/

Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural contributions to muscle fatigue: From the brain to the muscle and back again. Med Sci Sports Exerc. 2016;48(11):2294–306.

CAS  PubMed  PubMed Central  Google Scholar 

Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol. 1992;72(5):1631–48.

CAS  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews, vol. 372. The BMJ: BMJ Publishing Group; 2021.

Google Scholar 

Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3. The Cochrane Collaboration. 2022. Available from: www.training.cochrane.org/handbook

Moreau D, Gamble B. Conducting a Meta-Analysis in the Age of Open Science: Tools, Tips, and Practical Recommendations. Psychol Methods. 2022;27(3):426–32.

PubMed  Google Scholar 

The EndNote Team. EndNote. Philadelphia, PA: Clarivate; 2013.

ASReview LAB developers. ASReview LAB - A tool for AI-assisted systematic reviews (v1.1). Zenodo; 2022. https://doi.org/10.5281/zenodo.7319063.

ASReview. ASReview. 2023 [cited 2023 Sep 22]. Available from: https://asreview.nl/blog/active-learning-explained/

Boetje J, van de Schoot R. The SAFE Procedure : A Practical Stopping Heuristic for Active Learning-Based Screening in Systematic Reviews and Meta-Analyses. PsycArxiv Prepr. 2023;1–28. https://doi.org/10.21203/rs.3.rs-2856011/v1.

ASReview LAB developers. ASReview LAB Software Documentation (v1.3). Zenodo; 2023. https://doi.org/10.5281/zenodo.10066693.

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev [Internet]. 2016;5(1):1–10. Available from: https://doi.org/10.1186/s13643-016-0384-4

Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:4–10.

Google Scholar 

Schünemann HJ, Cuello C, Akl EA, Mustafa RA, Meerpohl JJ, Thayer K, Morgan RL, Gartlehner G, Kunz R, Katikireddi SV, Sterne J, Higgins JP, Guyatt G, GRADE Working Group. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J Clin Epidemiol. 2019;111:105–14. https://doi.org/10.1016/j.jclinepi.2018.01.012. Epub 2018 Feb 9.

Schünemann HJ, Brożek J, Guyatt G, Oxman A. GRADE handbook for grading quality of evidence and strength of recommendations. [Internet]. October 20. The GRADE Working Group; 2013. Available from: https://guidelinedevelopment.org/handbook.

Lindemann U. Spatiotemporal gait analysis of older persons in clinical practice and research. Z Gerontol Geriatr. 2020;53(2):171–8. Available from: https://link-springer-com.vu-nl.idm.oclc.org/article/10.1007/s00391-019-01520-8.

Dapp U, Vinyard D, Golgert S, Krumpoch S, Freiberger E. Reference values of gait characteristics in community-dwelling older persons with different physical functional levels. BMC Geriatr [Internet]. 2022;22(1):713. Available from: https://doi.org/10.1186/s12877-022-03373-0

Hollman JH, McDade EM, Petersen RC. Normative spatiotemporal gait parameters in older adults. Gait Posture. 2011;34(1):111–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966636211001019

Cuijpers P, Weitz E, Cristea IA, Twisk J. Pre-post effect sizes should be avoided in meta-analyses. Epidemiol Psychiatr Sci. 2017;26(4):364–8.

CAS  PubMed  Google Scholar 

Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005;30(3):261–93.

Google Scholar 

Cochran WG. The Combination of Estimates from Different Experiments. Biometrics [Internet]. 1954;10(1):101. Available from: https://www.jstor.org/stable/3001666?origin=crossref

Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta‐analysis. Stat Med [Internet]. 2002;21(11):1539–58. Available from: https://onlinelibrary.wiley.com/doi/10.1002/sim.1186.

R Core Team. A Language and Environment for Statistical Computing [Internet]. R Foundation for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. p. https://www.R-project.org. Available from: http://www.r-project.org.

RStudio Team. RStudio: Integrated Development for R [Internet]. Boston, MA: RStudio, PBC; 2020. Available from: http://www.rstudio.com/.

Viechtbauer W. Conducting meta-analyses in R with the metafor. J Stat Softw. 2010;36(3):1–48.

Google Scholar 

Pustejovsky JE. clubSandwich: Cluster-Robust (Sandwich) Variance Estimators with Small-Sample Corrections [Internet]. 2023. Available from: https://cran.r-project.org/package=clubSandwich.

Harrer M, Cuijpers P, Furukawa T, Ebert DD. dmetar: Companion R package for the guide “Doing Meta-Analysis in R” [Internet]. 2019. Available from: https://dmetar.protectlab.org/authors#citation

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4(43):1686.

Google Scholar 

Auguie B. gridExtra: Miscellaneous Functions for “Grid” Graphics [Internet]. 2017. Available from: https://cran.r-project.org/package=gridExtra

Nakagawa S, Lagisz M, O’Dea RE, Pottier P, Rutkowska J, Senior AM, et al. orchaRd 2.0: An R package for visualizing meta-analyses with orchard plots. EcoEvoRxiv. 2023;12:4–12.

Beath KJ. Metaplus: An R-Package for the Analysis of Robust Meta-Analysis and Meta-Regression. R J [Internet]. 2016;8(1):5–16. Available from: https://journal.r-project.org/archive/2016-1/beath.pdf

Braginsky M, Mathur M, VanderWeele TJ, Solymos P. PublicationBias: Sensitivity Analysis for Publication Bias in Meta-Analyses [Internet]. 2023. Available from: https://github.com/mathurlabstanford/PublicationBias

Mathur MB. P-hacking in meta-analyses: A formalization and new meta-analytic methods. 2022; Available from: https://osf.io/ezjsx/

Mathur M, Braginsky M. phacking: Sensitivity Analysis for p-Hacking in Meta-Analyses [Internet]. 2023. Available from: https://github.com/mathurlabstanford/phacking

Mathur M, Braginsky M. multibiasmeta: Sensitivity Analysis for Multiple Biases in Meta-Analyses [Internet]. 2023. Available from: https://github.com/mathurlabstanford/multibiasmeta

Vembye MH, Pustejovsky JE. POMADE: Power for Meta-Analysis of Dependent Effects [Internet]. 2022. Available from: https://cran.r-project.org/package=POMADE

Haddaway NR, Page MJ, Pritchard CC, McGuinness LA, PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst Rev. 2022;8(2):e1230. Available from: https://doi.org/10.1002/cl2.1230.

McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Syn Meth. 2021;12:55–61. https://doi.org/10.1002/jrsm.1411.

Google Scholar 

Arvin M, Hoozemans MJM, Burger BJ, Rispens SM, Verschueren SMP, van Dieën JH, et al. Effects of hip abductor muscle fatigue on gait control and hip position sense in healthy older adults. Gait Posture. 2015;42(4):545–9. Available from: https://pubmed.ncbi.nlm.nih.gov/26386676/

Baptista RR, Aires AG, Giacomazzi LP, Vilar TB, Tarouco IL. Is there an effect of stair negotiation on subsequent gait kinetics in elderly women? Res Biomed Eng. 2020;36(1):31–7. Available from: http://link.springer.com/10.1007/s42600-019-00030-1.

Barbieri FA, dos Santos PCR, Simieli L, Orcioli-Silva D, van Dieën JH, Gobbi LTB. Interactions of age and leg muscle fatigue on unobstructed walking and obstacle crossing. Gait Posture. 2014;39(3):985–90.

PubMed  Google Scholar 

Chen S-H, Chou L-S. Gait balance control after fatigue: Effects of age and cognitive demand. Gait Posture. 2022;95:129–34.

PubMed  Google Scholar 

Da Rocha ES, Kunzler MR, Bobbert MF, Duysens J, Carpes FP. 30 min of treadmill walking at self-selected speed does not increase gait variability in independent elderly. J Sports Sci. 2018;36(11):1305–11. Available from: https://doi.org/10.1080/02640414.2017.1375139

Drum SN, Faude O, de Fay du Lavallaz E, Allemann R, Nève G, Donath L. Acute effects of walking at moderate normobaric hypoxia on gait and balance performance in healthy community-dwelling seniors: A randomized controlled crossover study. Arch Gerontol Geriatr. 2016;67:74–9.

Egerton T, Brauer SG, Cresswell AG. Fatigue after physical activity in healthy and balance-impaired elderly. J Aging Phys Act. 2009;17(1):89–105.

PubMed  Google Scholar 

Elhadi MMO, Ma CZ, Wong DWCC, Wan AHPP, Lee WCCC. Comprehensive Gait Analysis of Healthy Older Adults Who Have Undergone Long-Distance Walking. J Aging Phys Act. 2017;25(3):367–77. Available from: https://journals.humankinetics.com/view/journals/japa/25/3/article-p367.xml

Elhadi MMO, Ma CZ-H, Lam WK, Lee WC-C. Biomechanical approach in facilitating long-distance walking of elderly people using footwear modifications. Gait Posture [Internet]. 2018;64(May):101–7. Available from: https://doi.org/10.1016/j.gaitpost.2018.05.032

Granacher U, Wolf I, Wehrle A, Bridenbaugh S, Kressig RW. Effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults. J Neuroeng Rehabil. 2010;7(1). Available from: https://pubmed.ncbi.nlm.nih.gov/21062458/

Hamacher DD, Törpel A, Hamacher DD, Schega L. The effect of physical exhaustion on gait stability in young and older individuals. Gait Posture [Internet]. 2016 Jul 1;48:137–9. Available from: https://pubmed.ncbi.nlm.nih.gov/27239774/

Helbostad JL, Leirfall S, Moe-Nilssen R, Sletvold O. Physical Fatigue Affects Gait Characteristics in Older Persons. Journals Gerontol Ser A [Internet]. 2007;62(9):1010–5. Available from: https://academic.oup.com/biomedgerontology/article/62/9/1010/525884

Hurt CP, Rosenblatt N, Crenshaw JR, Grabiner MD. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults. Gait Posture. 2010;31(4):461–4.

PubMed  Google Scholar 

Ko SU, Hausdorff JM, Ferrucci L. Age-associated differences in the gait pattern changes of older adults during fast-speed and fatigue conditions: Results from the Baltimore longitudinal study of ageing. Age Ageing. 2010;39(6):688–94. Available from: https://pubmed.ncbi.nlm.nih.gov/20833863/

Kushioka J, Sun R, Zhang W, Muaremi A, Leutheuser H, Odonkor CA, Smuck M. Gait Variability to Phenotype Common Orthopedic Gait Impairments Using Wearable Sensors. Sensors. 2022;22(23):9301. https://doi.org/10.3390/s22239301.

PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif