External and internal GATE/Geant4 dosimetric calculations on voxelized phantoms

Chiavassa S, Lemosquet A, Aubineau-Laniece I, De Carlan L, Clairand I, Ferrer L, Bardies M, Franck D, Zankl M. Dosimetric comparison of monte carlo codes (EGS4, MCNP, MCNPX) considering external and internal exposures of the zubal phantom to electron and photon sources. Radiat Prot Dosim. 2005;116(1–4):631–5. https://doi.org/10.1093/rpd/nci063.

Article  CAS  Google Scholar 

ICRP: International commission on radiological protection. adult reference computational phantoms, ICRP Publication 110. Ann ICRP 39, 1–166 (2009)

Hadid L, Desbrée A, Schlattl H, Franck D. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons. Phys Med Biol. 2010;55(13):3631–41. https://doi.org/10.1088/0031-9155/55/13/004.

Article  CAS  PubMed  Google Scholar 

Lamart S, Bouville A, Simon SL, Eckerman KF, Melo D, Lee C. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on \(I}\) in the thyroid. Phys Med Biol. 2011;56(22):7317–35. https://doi.org/10.1088/0031-9155/56/22/020.

Article  PubMed  PubMed Central  Google Scholar 

Lamart S, Simon SL, Bouville A, Moroz BE, Lee C. S values for \(I}\) based on the ICRP adult voxel phantoms. Radiat Prot Dosim. 2016;168(1):92–110. https://doi.org/10.1093/rpd/ncv016.

Article  CAS  Google Scholar 

Large M, Malaroda A, Petasecca M, Rosenfeld A, Guatelli S. Modelling ICRP110 adult reference voxel phantoms for dosimetric applications: development of a new Geant4 advanced example. J Phys: Conf Ser. 2020;1662(1):012021. https://doi.org/10.1088/1742-6596/1662/1/012021.

Article  Google Scholar 

Gómez-Ros JM, Moraleda M, Arce P, Duc-Ky B, Desorgher L, Kim HS, Krstic D, Kuć M, Le N-T, Lee Y-K. Monte carlo calculation of the organ equivalent dose and effective dose due to immersion in a \(N}\) beta source in air using the ICRP reference phantoms. Radiat Meas. 2021;145:106612–6. https://doi.org/10.1016/j.radmeas.2021.106612.

Article  CAS  Google Scholar 

Santin G, Strul D, Lazaro D, Simon L, Krieguer M, Martins MV, Breton V, Morel C. Gate: A Geant4-based simulation platform for PET and SPECT integrating movement and time management. IEEE Trans Nucl Scien. 2003;50(5):1516–21. https://doi.org/10.1109/TNS.2003.817974.

Article  Google Scholar 

Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardies M, Bloomfield P. Gate: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49(19):4543–61. https://doi.org/10.1088/0031-9155/49/19/007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agostinelli S, Allison J, Amako K, Apostolakis S. Geant4-a simulation toolkit. Nucl Instrum Meth A. 2003;506(3):250–303. https://doi.org/10.1016/S0168-9002(03)01368-8.

Article  CAS  Google Scholar 

Parach AA, Rajabi H, Askari MA. Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code. Radiat Environ Biophys. 2011;50:441–50. https://doi.org/10.1007/s00411-011-0370-0.

Article  PubMed  Google Scholar 

Snyder WS. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various argans of a heterogeneous phantom. MIRD pamphlet No. 5 1969.

Geng C, Tang X, Qian W, Guan JF, Johns YuH, Gong C, Shu D, Chen D. Calculations of S-values and effective dose for the radioiodine carrier and surrounding individuals based on Chinese hybrid reference phantoms using the Monte Carlo technique. J Radiol Prot. 2015;35(3):707–17. https://doi.org/10.1088/0952-4746/35/3/707.

Article  CAS  PubMed  Google Scholar 

Parach A, Rajabi H. A comparison between GATE4 results and MCNP4b published data for internal radiation dosimetry. Nuklearmedizin. 2011;50(03):122–33. https://doi.org/10.3413/Nukmed-0363-10-10.

Article  CAS  PubMed  Google Scholar 

Parach A-A, Rajabi H, Askari M-A. Paired organs-should they be treated jointly or separately in internal dosimetry? Med Phys. 2011;38(10):5509–21. https://doi.org/10.1118/1.3637493.

Article  PubMed  Google Scholar 

Saeedzadeh E, Sarkar S, Abbaspour Tehrani-Fard A, Ay M, Khosravi H, Loudos G. 3D calculation of absorbed dose for \(I}\)-targeted radiotherapy: a Monte Carlo study. Radiat Prot Dosim. 2012;150(3):298–305. https://doi.org/10.1093/rpd/ncr411.

Article  CAS  Google Scholar 

Asl RG, Parach A, Nasseri S, Momennezhad SM, Zakavi Sadoughi H. Specific absorbed fractions of internal photon and electron emitters in a human voxel-based phantom: A Monte Carlo study. J Nucl Med. 2017;16(02):114–21. https://doi.org/10.4103/1450-1147.203065.

Article  Google Scholar 

Villoing D, Marcatili S, Garcia M-P, Bardies M. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model. Phys Med Biol. 2017;62(5):1885–904. https://doi.org/10.1088/1361-6560/62/5/1885.

Article  CAS  PubMed  Google Scholar 

Mohammadi A, Kinase S. Monte Carlo simulations of photon specific absorbed fractions in a mouse voxel phantom. Nucl Sci Tech. 2011;1:126–9. https://doi.org/10.15669/pnst.1.126.

Article  Google Scholar 

Mohammadi A, Kinase S. Electron absorbed fractions and S values in a voxel-based mouse phantom. Radioisotopes. 2011;60(12):505–12. https://doi.org/10.3769/radioisotopes.60.505.

Article  CAS  Google Scholar 

Laazouzi K, Boukhal H, Arectout A, Hadouachi M, Belhaj OE. Specific absorbed fractions of electrons and photons for digimouse voxelized phantom using GATE/GEANT4 Monte Carlo simulation. Appl Radiat Isoto. 2023;193:110637–1110. https://doi.org/10.1016/j.apradiso.2022.110637.

Article  CAS  Google Scholar 

Fathi I, Mkimel M, Mesradi MR. GATE/GEANT4 simulation of radiation risk induced cancer from mammographic screening. Radiat Phys Chem. 2022;193:109929. https://doi.org/10.1016/j.radphyschem.2021.109929.

Article  CAS  Google Scholar 

Seroul P, Sarrut D. VV: a viewer for the evaluation of 4D image registration. In: MIDAS Journal (Medical Image Computing and Computer-Assisted Intervention MICCAI’2008, Workshop-Systems and Architectures for Computer Assisted Interventions), 2008:1–8. https://doi.org/10.54294/hfoogp

Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi G, Hoffer PB. Computerized three-dimensional segmented human anatomy. Med Phys. 1994;21(2):299–302. https://doi.org/10.1118/1.597290.

Article  CAS  PubMed  Google Scholar 

ICRP: International commission on radiological protection. basic anatomical and physiological data for use in radiological protection, ICRP Publication 89. Ann. ICRP 2002;32(3-4):1–277

Zankl M, Wittmann A. The adult male voxel model" Golem" segmented from whole-body CT patient data. Radiat Environ Biophys. 2001;40(2):153–62. https://doi.org/10.1007/s004110100094.

Article  CAS  PubMed  Google Scholar 

Zankl M, Becker J, Fill U, Petoussi-Henss N, Eckerman K. Gsf male and female adult voxel models representing ICRP reference man the present status. The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World 2005;1721:1

Zankl M, Eckerman K, Bolch W. Voxel-based models representing the male and female icrp reference adult-the skeleton. Radiat Prot Dosim. 2007;127(1–4):174–86. https://doi.org/10.1093/rpd/ncm269.

Article  CAS  Google Scholar 

ICRP: International Commission on Radiological Protection. Tissue Substitutes in Radiation Dosimetry and Measurement, ICRU Report 44, USA. WB Saunders 1989.

ICRP: International commission on radiological protection. nuclear decay data for dosimetric calculations, ICRP Publication 107. Ann. ICRP 2008;38(3):7–96

Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: A generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature. J Nucl Med. 2009;50(3):477–84. https://doi.org/10.2967/jnumed.108.056036.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif